These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 22733807)
1. Kinetic analysis of aptazyme-regulated gene expression in a cell-free translation system: modeling of ligand-dependent and -independent expression. Kobori S; Ichihashi N; Kazuta Y; Matsuura T; Yomo T RNA; 2012 Aug; 18(8):1458-65. PubMed ID: 22733807 [TBL] [Abstract][Full Text] [Related]
2. Simple identification of two causes of noise in an aptazyme system by monitoring cell-free transcription. Ichihashi N; Kobori S; Yomo T Methods Enzymol; 2015; 550():93-107. PubMed ID: 25605382 [TBL] [Abstract][Full Text] [Related]
3. In vivo screening for aptazyme-based bacterial riboswitches. Rehm C; Hartig JS Methods Mol Biol; 2014; 1111():237-49. PubMed ID: 24549624 [TBL] [Abstract][Full Text] [Related]
5. Leakage and slow allostery limit performance of single drug-sensing aptazyme molecules based on the hammerhead ribozyme. de Silva C; Walter NG RNA; 2009 Jan; 15(1):76-84. PubMed ID: 19029309 [TBL] [Abstract][Full Text] [Related]
6. Engineering Aptazyme Switches for Conditional Gene Expression in Mammalian Cells Utilizing an In Vivo Screening Approach. Rehm C; Klauser B; Finke M; Hartig JS Methods Mol Biol; 2021; 2323():199-212. PubMed ID: 34086282 [TBL] [Abstract][Full Text] [Related]
10. Dual-selection for evolution of in vivo functional aptazymes as riboswitch parts. Goler JA; Carothers JM; Keasling JD Methods Mol Biol; 2014; 1111():221-35. PubMed ID: 24549623 [TBL] [Abstract][Full Text] [Related]
11. Engineering aptazyme switches for conditional gene expression in mammalian cells utilizing an in vivo screening approach. Rehm C; Klauser B; Hartig JS Methods Mol Biol; 2015; 1316():127-40. PubMed ID: 25967058 [TBL] [Abstract][Full Text] [Related]
12. Rational design of aptazyme riboswitches for efficient control of gene expression in mammalian cells. Zhong G; Wang H; Bailey CC; Gao G; Farzan M Elife; 2016 Nov; 5():. PubMed ID: 27805569 [TBL] [Abstract][Full Text] [Related]
13. Aptazyme-based biosensors using a eukaryotic cell-free translation system. Ogawa A Nucleic Acids Symp Ser (Oxf); 2009; (53):261-2. PubMed ID: 19749360 [TBL] [Abstract][Full Text] [Related]
14. Synthetic mammalian riboswitches based on guanine aptazyme. Nomura Y; Kumar D; Yokobayashi Y Chem Commun (Camb); 2012 Jul; 48(57):7215-7. PubMed ID: 22692003 [TBL] [Abstract][Full Text] [Related]
15. Aptazyme-based riboswitches as label-free and detector-free sensors for cofactors. Ogawa A; Maeda M Bioorg Med Chem Lett; 2007 Jun; 17(11):3156-60. PubMed ID: 17391960 [TBL] [Abstract][Full Text] [Related]
16. RNA aptazyme-tethered large gold nanoparticles for on-the-spot sensing of the aptazyme ligand. Ogawa A Bioorg Med Chem Lett; 2011 Jan; 21(1):155-9. PubMed ID: 21134750 [TBL] [Abstract][Full Text] [Related]
17. Bis-aptazyme sensors for hepatitis C virus replicase and helicase without blank signal. Cho S; Kim JE; Lee BR; Kim JH; Kim BG Nucleic Acids Res; 2005 Nov; 33(20):e177. PubMed ID: 16314308 [TBL] [Abstract][Full Text] [Related]
18. Aptazymes: Expanding the Specificity of Natural Catalytic Nucleic Acids by Application of In Vitro Selected Oligonucleotides. Walter JG; Stahl F Adv Biochem Eng Biotechnol; 2020; 170():107-119. PubMed ID: 30847536 [TBL] [Abstract][Full Text] [Related]