These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 22733820)
1. A dominant negative heterozygous G87R mutation in the zinc transporter, ZnT-2 (SLC30A2), results in transient neonatal zinc deficiency. Lasry I; Seo YA; Ityel H; Shalva N; Pode-Shakked B; Glaser F; Berman B; Berezovsky I; Goncearenco A; Klar A; Levy J; Anikster Y; Kelleher SL; Assaraf YG J Biol Chem; 2012 Aug; 287(35):29348-61. PubMed ID: 22733820 [TBL] [Abstract][Full Text] [Related]
2. In situ dimerization of multiple wild type and mutant zinc transporters in live cells using bimolecular fluorescence complementation. Lasry I; Golan Y; Berman B; Amram N; Glaser F; Assaraf YG J Biol Chem; 2014 Mar; 289(11):7275-92. PubMed ID: 24451381 [TBL] [Abstract][Full Text] [Related]
3. Transient Neonatal Zinc Deficiency Caused by a Heterozygous G87R Mutation in the Zinc Transporter ZnT-2 (SLC30A2) Gene in the Mother Highlighting the Importance of Zn (2+) for Normal Growth and Development. Miletta MC; Bieri A; Kernland K; Schöni MH; Petkovic V; Flück CE; Eblé A; Mullis PE Int J Endocrinol; 2013; 2013():259189. PubMed ID: 24194756 [TBL] [Abstract][Full Text] [Related]
4. Identification of a mutation in SLC30A2 (ZnT-2) in women with low milk zinc concentration that results in transient neonatal zinc deficiency. Chowanadisai W; Lönnerdal B; Kelleher SL J Biol Chem; 2006 Dec; 281(51):39699-707. PubMed ID: 17065149 [TBL] [Abstract][Full Text] [Related]
6. Novel mutations in SLC30A2 involved in the pathogenesis of transient neonatal zinc deficiency. Itsumura N; Kibihara Y; Fukue K; Miyata A; Fukushima K; Tamagawa-Mineoka R; Katoh N; Nishito Y; Ishida R; Narita H; Kodama H; Kambe T Pediatr Res; 2016 Oct; 80(4):586-94. PubMed ID: 27304099 [TBL] [Abstract][Full Text] [Related]
7. High proportion of transient neonatal zinc deficiency causing alleles in the general population. Golan Y; Lehvy A; Horev G; Assaraf YG J Cell Mol Med; 2019 Feb; 23(2):828-840. PubMed ID: 30450693 [TBL] [Abstract][Full Text] [Related]
8. The role of the zinc transporter SLC30A2/ZnT2 in transient neonatal zinc deficiency. Golan Y; Kambe T; Assaraf YG Metallomics; 2017 Oct; 9(10):1352-1366. PubMed ID: 28665435 [TBL] [Abstract][Full Text] [Related]
9. Compound heterozygous mutations in SLC30A2/ZnT2 results in low milk zinc concentrations: a novel mechanism for zinc deficiency in a breast-fed infant. Itsumura N; Inamo Y; Okazaki F; Teranishi F; Narita H; Kambe T; Kodama H PLoS One; 2013; 8(5):e64045. PubMed ID: 23741301 [TBL] [Abstract][Full Text] [Related]
10. Transient neonatal zinc deficiency due to a new autosomal dominant mutation in gene SLC30A2 (ZnT-2). Lova Navarro M; Vera Casaño A; Benito López C; Fernández Ballesteros MD; Godoy Díaz DJ; Crespo Erchiga A; Romero Brufau S Pediatr Dermatol; 2014; 31(2):251-2. PubMed ID: 24456035 [TBL] [Abstract][Full Text] [Related]
11. A novel homozygous mutation p.E88K in maternal SLC30A2 gene as a cause of transient neonatal zinc deficiency. Li Z; Wang J; Yang Y; Wang S Exp Dermatol; 2020 Jun; 29(6):556-561. PubMed ID: 32278324 [TBL] [Abstract][Full Text] [Related]
12. Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity. Hoch E; Lin W; Chai J; Hershfinkel M; Fu D; Sekler I Proc Natl Acad Sci U S A; 2012 May; 109(19):7202-7. PubMed ID: 22529353 [TBL] [Abstract][Full Text] [Related]
13. Novel Muto T; Kawase Y; Aiba K; Okuma M; Itsumura N; Luo S; Ogawa N; Tsuji T; Kambe T Pediatr Investig; 2023 Mar; 7(1):6-12. PubMed ID: 36967740 [TBL] [Abstract][Full Text] [Related]
14. Molecular architecture and function of ZnT transporters. Kambe T Curr Top Membr; 2012; 69():199-220. PubMed ID: 23046652 [TBL] [Abstract][Full Text] [Related]
15. Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Chimienti F; Devergnas S; Favier A; Seve M Diabetes; 2004 Sep; 53(9):2330-7. PubMed ID: 15331542 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional structure of beta-cell-specific zinc transporter, ZnT-8, predicted from the type 2 diabetes-associated gene variant SLC30A8 R325W. Weijers RN Diabetol Metab Syndr; 2010 Jun; 2(1):33. PubMed ID: 20525392 [TBL] [Abstract][Full Text] [Related]
18. Genetic causes and gene–nutrient interactions in mammalian zinc deficiencies: acrodermatitis enteropathica and transient neonatal zinc deficiency as examples. Kasana S; Din J; Maret W J Trace Elem Med Biol; 2015 Jan; 29():47-62. PubMed ID: 25468189 [TBL] [Abstract][Full Text] [Related]
19. ZnT-1 extrudes zinc from mammalian cells functioning as a Zn(2+)/H(+) exchanger. Shusterman E; Beharier O; Shiri L; Zarivach R; Etzion Y; Campbell CR; Lee IH; Okabayashi K; Dinudom A; Cook DI; Katz A; Moran A Metallomics; 2014 Sep; 6(9):1656-63. PubMed ID: 24951051 [TBL] [Abstract][Full Text] [Related]
20. Zinc transport and the inhibition of the L-type calcium channel are two separable functions of ZnT-1. Shusterman E; Beharier O; Levy S; Zarivach R; Etzion Y; Campbell CR; Lee IH; Dinudom A; Cook DI; Peretz A; Katz A; Gitler D; Moran A Metallomics; 2017 Mar; 9(3):228-238. PubMed ID: 28091657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]