These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 22734495)

  • 1. Comparison of product drying performance in molded and serum tubing vials using gentamicin sulfate as a model system.
    Hibler S; Wagner C; Gieseler H
    Pharm Dev Technol; 2012; 17(5):541-51. PubMed ID: 22734495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vial freeze-drying, part 1: new insights into heat transfer characteristics of tubing and molded vials.
    Hibler S; Wagner C; Gieseler H
    J Pharm Sci; 2012 Mar; 101(3):1189-201. PubMed ID: 22161688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molded Vial Manufacturing and Its Impact on Heat Transfer during Freeze-Drying: Vial Geometry Considerations.
    Wenzel T; Gieseler H
    AAPS PharmSciTech; 2021 Jan; 22(2):57. PubMed ID: 33502633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat transfer characteristics of current primary packaging systems for pharmaceutical freeze-drying.
    Hibler S; Gieseler H
    J Pharm Sci; 2012 Nov; 101(11):4025-31. PubMed ID: 22893524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heat and mass transfer scale-up issues during freeze-drying, I: atypical radiation and the edge vial effect.
    Rambhatla S; Pikal MJ
    AAPS PharmSciTech; 2003; 4(2):E14. PubMed ID: 12916896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid determination of vial heat transfer parameters using tunable diode laser absorption spectroscopy (TDLAS) in response to step-changes in pressure set-point during freeze-drying.
    Kuu WY; Nail SL; Sacha G
    J Pharm Sci; 2009 Mar; 98(3):1136-54. PubMed ID: 18683861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlation of laboratory and production freeze drying cycles.
    Kuu WY; Hardwick LM; Akers MJ
    Int J Pharm; 2005 Sep; 302(1-2):56-67. PubMed ID: 16099610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freeze-drying in novel container system: Characterization of heat and mass transfer in glass syringes.
    Patel SM; Pikal MJ
    J Pharm Sci; 2010 Jul; 99(7):3188-204. PubMed ID: 20166199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat and mass transfer scale-up issues during freeze-drying, III: control and characterization of dryer differences via operational qualification tests.
    Rambhatla S; Tchessalov S; Pikal MJ
    AAPS PharmSciTech; 2006 Apr; 7(2):E39. PubMed ID: 16796357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of mass and heat transfer parameters during freeze-drying cycles of pharmaceutical products.
    Hottot A; Vessot S; Andrieu J
    PDA J Pharm Sci Technol; 2005; 59(2):138-53. PubMed ID: 15971546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Packaging Materials in Freeze-Drying: Use of Polymer Caps and Nested Vials and Their Impact on Process and Product Attributes.
    Wenzel T; Gieseler H
    AAPS PharmSciTech; 2021 Feb; 22(3):82. PubMed ID: 33624199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Natural Variations in Freeze-Drying Parameters on Product Temperature History: Application of Quasi Steady-State Heat and Mass Transfer and Simple Statistics.
    Pikal MJ; Pande P; Bogner R; Sane P; Mudhivarthi V; Sharma P
    AAPS PharmSciTech; 2018 Oct; 19(7):2828-2842. PubMed ID: 30259404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein purification process engineering. Freeze drying: A practical overview.
    Gatlin LA; Nail SL
    Bioprocess Technol; 1994; 18():317-67. PubMed ID: 7764173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Vial Geometry Variability Influences Heat Transfer and Product Temperature During Freeze-Drying.
    Scutellà B; Passot S; Bourlés E; Fonseca F; Tréléa IC
    J Pharm Sci; 2017 Mar; 106(3):770-778. PubMed ID: 27939928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Process optimization and transfer of freeze-drying in nested vial systems.
    Ehlers S; Schroeder R; Friess W
    Eur J Pharm Biopharm; 2021 Feb; 159():143-150. PubMed ID: 33429009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Failure of Glass Tubing Vials during Lyophilization.
    Machak DR; Smay GL
    PDA J Pharm Sci Technol; 2019; 73(1):30-38. PubMed ID: 30361283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Techniques used to freeze-dry "small doses" of thrombin.
    Jaffe DR; Samyn JC; Sheehan G
    Dev Biol Stand; 1992; 74():211-3; discussion 213-4. PubMed ID: 1592172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental determination of the key heat transfer mechanisms in pharmaceutical freeze-drying.
    Ganguly A; Nail SL; Alexeenko A
    J Pharm Sci; 2013 May; 102(5):1610-25. PubMed ID: 23580359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Aspects of Measuring the Vial Heat Transfer Coefficient in Pharmaceutical Freeze-Drying.
    Wegiel LA; Ferris SJ; Nail SL
    AAPS PharmSciTech; 2018 May; 19(4):1810-1817. PubMed ID: 29616490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quality by design: optimization of a freeze-drying cycle via design space in case of heterogeneous drying behavior and influence of the freezing protocol.
    Pisano R; Fissore D; Barresi AA; Brayard P; Chouvenc P; Woinet B
    Pharm Dev Technol; 2013 Feb; 18(1):280-95. PubMed ID: 23078169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.