These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
368 related articles for article (PubMed ID: 22734558)
1. Antagonism of Trichoderma harzianum ETS 323 on Botrytis cinerea mycelium in culture conditions. Cheng CH; Yang CA; Peng KC Phytopathology; 2012 Nov; 102(11):1054-63. PubMed ID: 22734558 [TBL] [Abstract][Full Text] [Related]
2. A novel L-amino acid oxidase from Trichoderma harzianum ETS 323 associated with antagonism of Rhizoctonia solani. Yang CA; Cheng CH; Lo CT; Liu SY; Lee JW; Peng KC J Agric Food Chem; 2011 May; 59(9):4519-26. PubMed ID: 21456553 [TBL] [Abstract][Full Text] [Related]
3. Antagonistic studies and hyphal interactions of the new antagonist Aspergillus piperis against some phytopathogenic fungi in vitro in comparison with Trichoderma harzianum. El-Debaiky SA Microb Pathog; 2017 Dec; 113():135-143. PubMed ID: 29074431 [TBL] [Abstract][Full Text] [Related]
4. Monomeric L-amino acid oxidase-induced mitochondrial dysfunction in Rhizoctonia solani Reveals a novel antagonistic mechanism of Trichoderma harzianum ETS 323. Yang CA; Cheng CH; Lee JW; Lo CT; Liu SY; Peng KC J Agric Food Chem; 2012 Mar; 60(10):2464-71. PubMed ID: 22352318 [TBL] [Abstract][Full Text] [Related]
5. Induced proteome of Trichoderma harzianum by Botrytis cinerea. Yang HH; Yang SL; Peng KC; Lo CT; Liu SY Mycol Res; 2009 Sep; 113(Pt 9):924-32. PubMed ID: 19422913 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the effects of chemical versus biological control on Botrytis cinerea agent of gray mould disease of strawberry. Alizadeh HR; Sharifi-Tehrani A; Hedjaroude GA Commun Agric Appl Biol Sci; 2007; 72(4):795-800. PubMed ID: 18396812 [TBL] [Abstract][Full Text] [Related]
7. Identification of antibacterial mechanism of L-amino acid oxidase derived from Trichoderma harzianum ETS 323. Yang CA; Cheng CH; Liu SY; Lo CT; Lee JW; Peng KC FEBS J; 2011 Sep; 278(18):3381-94. PubMed ID: 21781279 [TBL] [Abstract][Full Text] [Related]
8. Biocontrol of strawberry Botrytis gray mold and prolong the fruit shelf-life by fumigant Trichoderma spp. Fan QS; Lin HJ; Hu YJ; Jin J; Yan HH; Zhang RQ Biotechnol Lett; 2024 Oct; 46(5):751-766. PubMed ID: 38811460 [TBL] [Abstract][Full Text] [Related]
9. L-amino acid oxidase-induced apoptosis in filamentous Botrytis cinerea. Cheng CH; Yang CA; Liu SY; Lo CT; Peng KC Anal Biochem; 2012 Jan; 420(1):93-5. PubMed ID: 21951783 [TBL] [Abstract][Full Text] [Related]
10. Mycoparasitism of Acremonium strictum BCP on Botrytis cinerea, the gray mold pathogen. Choi GJ; Kim JC; Jang KS; Cho KY; Kim HT J Microbiol Biotechnol; 2008 Jan; 18(1):167-70. PubMed ID: 18239435 [TBL] [Abstract][Full Text] [Related]
11. The glyoxylate cycle is involved in pleotropic phenotypes, antagonism and induction of plant defence responses in the fungal biocontrol agent Trichoderma atroviride. Dubey MK; Broberg A; Sooriyaarachchi S; Ubhayasekera W; Jensen DF; Karlsson M Fungal Genet Biol; 2013; 58-59():33-41. PubMed ID: 23850601 [TBL] [Abstract][Full Text] [Related]
12. Loss of bcbrn1 and bcpks13 in Botrytis cinerea Not Only Blocks Melanization But Also Increases Vegetative Growth and Virulence. Zhang C; He Y; Zhu P; Chen L; Wang Y; Ni B; Xu L Mol Plant Microbe Interact; 2015 Oct; 28(10):1091-101. PubMed ID: 26035129 [TBL] [Abstract][Full Text] [Related]
13. Construction of a Streptomyces lydicus A01 transformant with a chit42 gene from Trichoderma harzianum P1 and evaluation of its biocontrol activity against Botrytis cinerea. Wu Q; Bai L; Liu W; Li Y; Lu C; Li Y; Fu K; Yu C; Chen J J Microbiol; 2013 Apr; 51(2):166-73. PubMed ID: 23625216 [TBL] [Abstract][Full Text] [Related]
14. Expression of L-amino acid oxidase of Trichoderma harzianum in tobacco confers resistance to Sclerotinia sclerotiorum and Botrytis cinerea. Peng KC; Lin CC; Liao CF; Yu HC; Lo CT; Yang HH; Lin KC Plant Sci; 2021 Feb; 303():110772. PubMed ID: 33487356 [TBL] [Abstract][Full Text] [Related]
15. Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis. Calvo J; Calvente V; de Orellano ME; Benuzzi D; Sanz de Tosetti MI Int J Food Microbiol; 2007 Feb; 113(3):251-7. PubMed ID: 17007950 [TBL] [Abstract][Full Text] [Related]
16. Cloning of a novel L-amino acid oxidase from Trichoderma harzianum ETS 323 and bioactivity analysis of overexpressed L-amino acid oxidase. Cheng CH; Yang CA; Liu SY; Lo CT; Huang HC; Liao FC; Peng KC J Agric Food Chem; 2011 Sep; 59(17):9142-9. PubMed ID: 21797276 [TBL] [Abstract][Full Text] [Related]
17. Biological control of Botrytis gray mould on tomato cultivated in greenhouse. Fiume F; Fiume G Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):897-908. PubMed ID: 17390837 [TBL] [Abstract][Full Text] [Related]
18. Resistance of Malus domestica fruit to Botrytis cinerea depends on endogenous ethylene biosynthesis. Akagi A; Dandekar AM; Stotz HU Phytopathology; 2011 Nov; 101(11):1311-21. PubMed ID: 21809978 [TBL] [Abstract][Full Text] [Related]
19. Cabbage defense response provoked by Trichoderma Th-LAAO. Liu CM; Liu SY; Liao CK; Lo CT; Lin KC; Peng KC Arch Microbiol; 2021 May; 203(4):1641-1647. PubMed ID: 33432379 [TBL] [Abstract][Full Text] [Related]
20. Talaromyces pinophilus strain AUN-1 as a novel mycoparasite of Botrytis cinerea, the pathogen of onion scape and umbel blights. Abdel-Rahim IR; Abo-Elyousr KAM Microbiol Res; 2018; 212-213():1-9. PubMed ID: 29853163 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]