These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 22734592)

  • 1. Arrow plot: a new graphical tool for selecting up and down regulated genes and genes differentially expressed on sample subgroups.
    Silva-Fortes C; Amaral Turkman MA; Sousa L
    BMC Bioinformatics; 2012 Jun; 13():147. PubMed ID: 22734592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A weighted average difference method for detecting differentially expressed genes from microarray data.
    Kadota K; Nakai Y; Shimizu K
    Algorithms Mol Biol; 2008 Jun; 3():8. PubMed ID: 18578891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Not proper ROC curves as new tool for the analysis of differentially expressed genes in microarray experiments.
    Parodi S; Pistoia V; Muselli M
    BMC Bioinformatics; 2008 Oct; 9():410. PubMed ID: 18834513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ranking differentially expressed genes from Affymetrix gene expression data: methods with reproducibility, sensitivity, and specificity.
    Kadota K; Nakai Y; Shimizu K
    Algorithms Mol Biol; 2009 Apr; 4():7. PubMed ID: 19386098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison and evaluation of methods for generating differentially expressed gene lists from microarray data.
    Jeffery IB; Higgins DG; Culhane AC
    BMC Bioinformatics; 2006 Jul; 7():359. PubMed ID: 16872483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A unified framework for finding differentially expressed genes from microarray experiments.
    Shaik JS; Yeasin M
    BMC Bioinformatics; 2007 Sep; 8():347. PubMed ID: 17877806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intensity-based hierarchical Bayes method improves testing for differentially expressed genes in microarray experiments.
    Sartor MA; Tomlinson CR; Wesselkamper SC; Sivaganesan S; Leikauf GD; Medvedovic M
    BMC Bioinformatics; 2006 Dec; 7():538. PubMed ID: 17177995
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating methods for ranking differentially expressed genes applied to microArray quality control data.
    Kadota K; Shimizu K
    BMC Bioinformatics; 2011 Jun; 12():227. PubMed ID: 21639945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selecting differentially expressed genes from microarray experiments.
    Pepe MS; Longton G; Anderson GL; Schummer M
    Biometrics; 2003 Mar; 59(1):133-42. PubMed ID: 12762450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying differentially expressed genes from microarray experiments via statistic synthesis.
    Yang YH; Xiao Y; Segal MR
    Bioinformatics; 2005 Apr; 21(7):1084-93. PubMed ID: 15513985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Exploratory screening of potential pan-cancer biomarkers based on The Cancer Genome Atlas database].
    Zhou C; Ma X; Xing YK; Li LD; Chen J; Yao BY; Fu JL; Zhao P
    Beijing Da Xue Xue Bao Yi Xue Ban; 2021 Jun; 53(3):602-607. PubMed ID: 34145869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ranking analysis for identifying differentially expressed genes.
    Qi Y; Sun H; Sun Q; Pan L
    Genomics; 2011 May; 97(5):326-9. PubMed ID: 21402142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of common differentially expressed genes in urinary bladder cancer.
    Zaravinos A; Lambrou GI; Boulalas I; Delakas D; Spandidos DA
    PLoS One; 2011 Apr; 6(4):e18135. PubMed ID: 21483740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Support vector machine quantile regression for detecting differentially expressed genes in microarray analysis.
    Sohn I; Kim S; Hwang C; Lee JW; Shim J
    Methods Inf Med; 2008; 47(5):459-67. PubMed ID: 18852921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO.
    Zuo Y; Cui Y; Yu G; Li R; Ressom HW
    BMC Bioinformatics; 2017 Feb; 18(1):99. PubMed ID: 28187708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regularized binormal ROC method in disease classification using microarray data.
    Ma S; Song X; Huang J
    BMC Bioinformatics; 2006 May; 7():253. PubMed ID: 16684357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tests for differential gene expression using weights in oligonucleotide microarray experiments.
    Hu P; Beyene J; Greenwood CM
    BMC Genomics; 2006 Feb; 7():33. PubMed ID: 16504060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting differential expression in microarray data: comparison of optimal procedures.
    Perelman E; Ploner A; Calza S; Pawitan Y
    BMC Bioinformatics; 2007 Jan; 8():28. PubMed ID: 17257426
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fold change rank ordering statistics: a new method for detecting differentially expressed genes.
    Dembélé D; Kastner P
    BMC Bioinformatics; 2014 Jan; 15():14. PubMed ID: 24423217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confident difference criterion: a new Bayesian differentially expressed gene selection algorithm with applications.
    Yu F; Chen MH; Kuo L; Talbott H; Davis JS
    BMC Bioinformatics; 2015 Aug; 16():245. PubMed ID: 26250443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.