These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 22734732)

  • 1. Quantitative spectroscopic photoacoustic imaging: a review.
    Cox B; Laufer JG; Arridge SR; Beard PC
    J Biomed Opt; 2012 Jun; 17(6):061202. PubMed ID: 22734732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative photoacoustic microscopy of optical absorption coefficients from acoustic spectra in the optical diffusive regime.
    Guo Z; Favazza C; Garcia-Uribe A; Wang LV
    J Biomed Opt; 2012 Jun; 17(6):066011. PubMed ID: 22734767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoacoustic imaging and sensing.
    Anastasio MA; Beard PC
    J Biomed Opt; 2012 Jun; 17(6):061201. PubMed ID: 22734731
    [No Abstract]   [Full Text] [Related]  

  • 4. Investigation of light delivery geometries for photoacoustic applications using Monte Carlo simulations with multiple wavelengths, tissue types, and species characteristics.
    Sowers T; Yoon H; Emelianov S
    J Biomed Opt; 2020 Jan; 25(1):1-16. PubMed ID: 31975577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of optical absorption coefficient with focusing photoacoustic imaging.
    Li Z; Li H; Zeng Z; Xie W; Chen WR
    J Biomed Opt; 2012 Jun; 17(6):061216. PubMed ID: 22734746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling photoacoustic imaging with a scanning focused detector using Monte Carlo simulation of energy deposition.
    Paltauf G; Torke PR; Nuster R
    J Biomed Opt; 2018 Sep; 23(12):1-11. PubMed ID: 30251482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of inhomogeneous optical scattering coefficient distribution on recovery of optical absorption coefficient maps using tomographic photoacoustic data.
    Li X; Jiang H
    Phys Med Biol; 2013 Feb; 58(4):999-1011. PubMed ID: 23339968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deformation-compensated averaging for clutter reduction in epiphotoacoustic imaging in vivo.
    Jaeger M; Harris-Birtill D; Gertsch A; O'Flynn E; Bamber J
    J Biomed Opt; 2012 Jun; 17(6):066007. PubMed ID: 22734763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic Photoacoustic Imaging of Gold Nanorods.
    Namen AV; Luke GP
    Methods Mol Biol; 2017; 1570():179-194. PubMed ID: 28238137
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative photoacoustic tomography using forward and adjoint Monte Carlo models of radiance.
    Hochuli R; Powell S; Arridge S; Cox B
    J Biomed Opt; 2016 Dec; 21(12):126004. PubMed ID: 27918801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of a diffuse optical measurements-assisted quantitative photoacoustic tomographic method in reflection geometry.
    Xu C; Kumavor PD; Aguirre A; Zhu Q
    J Biomed Opt; 2012 Jun; 17(6):061213. PubMed ID: 22734743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrally encoded photoacoustic microscopy using a digital mirror device.
    Wang Y; Maslov K; Wang LV
    J Biomed Opt; 2012 Jun; 17(6):066020. PubMed ID: 22734776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo three-dimensional photoacoustic imaging based on a clinical matrix array ultrasound probe.
    Wang Y; Erpelding TN; Jankovic L; Guo Z; Robert JL; David G; Wang LV
    J Biomed Opt; 2012 Jun; 17(6):061208. PubMed ID: 22734738
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of virtual point detector concept and fluence compensation in acoustic resolution photoacoustic microscopy.
    Perekatova VV; Kirillin MY; Turchin IV; Subochev PV
    J Biomed Opt; 2018 Jul; 23(9):1-11. PubMed ID: 30066503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional quantitative photoacoustic tomography using an adjoint radiance Monte Carlo model and gradient descent.
    Buchmann J; Kaplan B; Powell S; Prohaska S; Laufer J
    J Biomed Opt; 2019 Jun; 24(6):1-13. PubMed ID: 31172727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative determination of chromophore concentrations from 2D photoacoustic images using a nonlinear model-based inversion scheme.
    Laufer J; Cox B; Zhang E; Beard P
    Appl Opt; 2010 Mar; 49(8):1219-33. PubMed ID: 20220877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues.
    Zhang E; Laufer J; Beard P
    Appl Opt; 2008 Feb; 47(4):561-77. PubMed ID: 18239717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hybrid nonlinear photoacoustic and reflectance confocal microscopy for label-free subcellular imaging with a single light source.
    Mattison SP; Mondragon E; Kaunas R; Applegate BE
    Opt Lett; 2017 Oct; 42(19):4028-4031. PubMed ID: 28957189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and characterization of an omnidirectional photoacoustic point source for calibration of a staring 3D photoacoustic imaging system.
    Roumeliotis M; Ephrat P; Patrick J; Carson JJ
    Opt Express; 2009 Aug; 17(17):15228-38. PubMed ID: 19688001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoacoustic spectrum analysis for microstructure characterization in biological tissue: analytical model.
    Xu G; Fowlkes JB; Tao C; Liu X; Wang X
    Ultrasound Med Biol; 2015 May; 41(5):1473-80. PubMed ID: 25748521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.