These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 22734891)
1. Encapsulation of ionic liquids within polymer shells via vapor phase deposition. Bradley LC; Gupta M Langmuir; 2012 Jul; 28(27):10276-80. PubMed ID: 22734891 [TBL] [Abstract][Full Text] [Related]
2. Formation of heterogeneous polymer films via simultaneous or sequential depositions of soluble and insoluble monomers onto ionic liquids. Bradley LC; Gupta M Langmuir; 2013 Aug; 29(33):10448-54. PubMed ID: 23919506 [TBL] [Abstract][Full Text] [Related]
3. Initiated chemical vapor deposition of poly(1H,1H,2H,2H-perfluorodecyl acrylate) thin films. Gupta M; Gleason KK Langmuir; 2006 Nov; 22(24):10047-52. PubMed ID: 17106998 [TBL] [Abstract][Full Text] [Related]
4. Preparation of low-surface-energy poly[2-(perfluorooctyl)ethyl acrylate] microparticles and its application to liquid marble formation. Matsukuma D; Watanabe H; Yamaguchi H; Takahara A Langmuir; 2011 Feb; 27(4):1269-74. PubMed ID: 21229982 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of polymer nanoparticles via vapor phase deposition onto liquid substrates. Haller PD; Gupta M Macromol Rapid Commun; 2014 Dec; 35(23):2000-4. PubMed ID: 25269429 [TBL] [Abstract][Full Text] [Related]
6. Initiated chemical vapor deposition of linear and cross-linked poly(2-hydroxyethyl methacrylate) for use as thin-film hydrogels. Chan K; Gleason KK Langmuir; 2005 Sep; 21(19):8930-9. PubMed ID: 16142981 [TBL] [Abstract][Full Text] [Related]
7. Effect of surface tension, viscosity, and process conditions on polymer morphology deposited at the liquid-vapor interface. Haller PD; Bradley LC; Gupta M Langmuir; 2013 Sep; 29(37):11640-5. PubMed ID: 24007385 [TBL] [Abstract][Full Text] [Related]
8. From polymer latexes to multifunctional liquid marbles. Fernandes AM; Mantione D; Gracia R; Leiza JR; Paulis M; Mecerreyes D ACS Appl Mater Interfaces; 2015 Feb; 7(7):4433-41. PubMed ID: 25633414 [TBL] [Abstract][Full Text] [Related]
9. Spontaneous phase transfer of thermosensitive hairy particles between water and an ionic liquid. Horton JM; Bai Z; Jiang X; Li D; Lodge TP; Zhao B Langmuir; 2011 Mar; 27(5):2019-27. PubMed ID: 21189037 [TBL] [Abstract][Full Text] [Related]
10. Spontaneous, Phase-Separation Induced Surface Roughness: A New Method to Design Parahydrophobic Polymer Coatings with Rose Petal-like Morphology. Szczepanski CR; Darmanin T; Guittard F ACS Appl Mater Interfaces; 2016 Feb; 8(5):3063-71. PubMed ID: 26794637 [TBL] [Abstract][Full Text] [Related]
12. Encapsulation of silica nanoparticles by redox-initiated graft polymerization from the surface of silica nanoparticles. Wang H; Peng M; Zheng J; Li P J Colloid Interface Sci; 2008 Oct; 326(1):151-7. PubMed ID: 18684468 [TBL] [Abstract][Full Text] [Related]
13. Effects of polymer architecture and composition on the adhesion of poly(tetrafluoroethylene). Tu CY; Liu YL; Luo MT; Lee KR; Lai JY Chemphyschem; 2006 Jun; 7(6):1355-60. PubMed ID: 16688709 [TBL] [Abstract][Full Text] [Related]
14. Superhydrophobic Copper Surfaces with Anticorrosion Properties Fabricated by Solventless CVD Methods. Vilaró I; Yagüe JL; Borrós S ACS Appl Mater Interfaces; 2017 Jan; 9(1):1057-1065. PubMed ID: 27977129 [TBL] [Abstract][Full Text] [Related]
15. Evaporation rate of graphite liquid marbles: comparison with water droplets. Dandan M; Erbil HY Langmuir; 2009 Jul; 25(14):8362-7. PubMed ID: 19499944 [TBL] [Abstract][Full Text] [Related]