These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 22735150)

  • 1. Caudex growth and phenology of Cyathea atrovirens (Langsd. & Fisch.) Domin (Cyatheaceae) in secondary forest, southern Brazil.
    Schmitt JL; Windisch PG
    Braz J Biol; 2012 May; 72(2):397-405. PubMed ID: 22735150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spore germination and gametophyte development of Cyathea atrovirens (Langsd. & Fisch.) Domin (Cyatheaceae) under different pH conditions.
    Rechenmacher C; Schmitt JL; Droste A
    Braz J Biol; 2010 Dec; 70(4 Suppl):1155-60. PubMed ID: 21225156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenology of 16 species of ferns in a subtropical forest of northeastern Taiwan.
    Lee PH; Lin TT; Chiou WL
    J Plant Res; 2009 Jan; 122(1):61-7. PubMed ID: 19002750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Herbivory and leaf expansion of Cyathea phalerata Mart. (Cyatheaceae) in subtropical Atlantic Forest, southern Brazil.
    Cunha S; Endres Júnior D; Silva VL; Droste A; Schmitt JL
    Braz J Biol; 2021; 83():e245386. PubMed ID: 34161461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro propagation of Cyathea atrovirens (Cyatheaceae): spore storage and sterilization conditions.
    Vargas IB; Droste A
    Rev Biol Trop; 2014 Mar; 62(1):299-308. PubMed ID: 24912359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neotropical ferns community phenology: climatic triggers in subtropical climate in Araucaria forest.
    Müller A; Correa MZ; Führ CS; Padoin TOH; de Quevedo DM; Schmitt JL
    Int J Biometeorol; 2019 Oct; 63(10):1393-1404. PubMed ID: 31297586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenology of Guarea macrophylla Vahl (Meliaceae) in subtropical riparian forest in southern Brazil.
    Müller A; Schmitt JL
    Braz J Biol; 2018 May; 78(2):187-194. PubMed ID: 28832838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodiversity and spatial distribution of epiphytic ferns on Alsophila setosa Kaulf. (Cyatheaceae) caudices in Rio Grande do Sul, Brazil.
    Schmitt JL; Windisch PG
    Braz J Biol; 2010 Aug; 70(3):521-8. PubMed ID: 20730338
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From observations to experiments in phenology research: investigating climate change impacts on trees and shrubs using dormant twigs.
    Primack RB; Laube J; Gallinat AS; Menzel A
    Ann Bot; 2015 Nov; 116(6):889-97. PubMed ID: 25851135
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in autumn senescence in northern hemisphere deciduous trees: a meta-analysis of autumn phenology studies.
    Gill AL; Gallinat AS; Sanders-DeMott R; Rigden AJ; Short Gianotti DJ; Mantooth JA; Templer PH
    Ann Bot; 2015 Nov; 116(6):875-88. PubMed ID: 25968905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenology of Araucaria Forest fern communities: comparison of the influence of natural edge, artificial edge, and forest interior.
    Müller A; Correa MZ; Führ CS; Padoin TOH; de Quevedo DM; Schmitt JL
    Int J Biometeorol; 2022 Nov; 66(11):2259-2271. PubMed ID: 36074272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale modeling of spring phenology across Deciduous Forests in the Eastern United States.
    Melaas EK; Friedl MA; Richardson AD
    Glob Chang Biol; 2016 Feb; 22(2):792-805. PubMed ID: 26456080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short photoperiod reduces the temperature sensitivity of leaf-out in saplings of Fagus sylvatica but not in horse chestnut.
    Fu YH; Piao S; Zhou X; Geng X; Hao F; Vitasse Y; Janssens IA
    Glob Chang Biol; 2019 May; 25(5):1696-1703. PubMed ID: 30779408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low temperature and short daylength interact to affect the leaf senescence of two temperate tree species.
    Wang H; Gao C; Ge Q
    Tree Physiol; 2022 Nov; 42(11):2252-2265. PubMed ID: 35708584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Edge effect and phenology in Erythroxylum tortuosum (Erythroxylaceae), a typical plant of the Brazilian Cerrado.
    Ishino MN; De Sibio PR; Rossi MN
    Braz J Biol; 2012 Aug; 72(3):587-94. PubMed ID: 22990831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Do seasonal changes in light availability influence the inverse leafing phenology of the neotropical dry forest understory shrub Bonellia nervosa (Theophrastaceae)?
    Chaves OM; Avalos G
    Rev Biol Trop; 2008 Mar; 56(1):257-68. PubMed ID: 18624241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental drivers on leaf phenology of ironstone outcrops species under seasonal climate.
    Garcia LC; Barros FV; Lemos-Filho JP
    An Acad Bras Cienc; 2017; 89(1):131-143. PubMed ID: 28198917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.
    Marchin RM; Salk CF; Hoffmann WA; Dunn RR
    Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenology of two Ficus species in seasonal semi-deciduous forest in Southern Brazil.
    Bianchini E; Emmerick JM; Messetti AV; Pimenta JA
    Braz J Biol; 2015 Nov; 75(4 Suppl 1):S206-14. PubMed ID: 26602353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substantial variation in leaf senescence times among 1360 temperate woody plant species: implications for phenology and ecosystem processes.
    Panchen ZA; Primack RB; Gallinat AS; Nordt B; Stevens AD; Du Y; Fahey R
    Ann Bot; 2015 Nov; 116(6):865-73. PubMed ID: 25808654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.