These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 22735154)
1. Development of reversible fluorescence probes based on redox oxoammonium cation for hypobromous acid detection in living cells. Yu F; Song P; Li P; Wang B; Han K Chem Commun (Camb); 2012 Aug; 48(62):7735-7. PubMed ID: 22735154 [TBL] [Abstract][Full Text] [Related]
2. A near-infrared reversible and ratiometric fluorescent probe based on Se-BODIPY for the redox cycle mediated by hypobromous acid and hydrogen sulfide in living cells. Wang B; Li P; Yu F; Chen J; Qu Z; Han K Chem Commun (Camb); 2013 Jun; 49(51):5790-2. PubMed ID: 23694993 [TBL] [Abstract][Full Text] [Related]
3. Novel bisbenzimide-nitroxides for nuclear redox imaging in living cells. Ikeda M; Nakagawa H; Suzuki T; Miyata N Bioorg Med Chem Lett; 2012 Mar; 22(5):1949-52. PubMed ID: 22306124 [TBL] [Abstract][Full Text] [Related]
4. Advances in organic fluorescent probes for bromide ions, hypobromous acid and related eosinophil peroxidase-A review. Zhang D; Yang X; Wang T; Ji X; Wu X Anal Chim Acta; 2023 Mar; 1244():340626. PubMed ID: 36737144 [TBL] [Abstract][Full Text] [Related]
5. An ICT-based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells. Srikun D; Miller EW; Domaille DW; Chang CJ J Am Chem Soc; 2008 Apr; 130(14):4596-7. PubMed ID: 18336027 [TBL] [Abstract][Full Text] [Related]
6. A near-infrared fluorescent probe for monitoring ozone and imaging in living cells. Xu K; Sun S; Li J; Li L; Qiang M; Tang B Chem Commun (Camb); 2012 Jan; 48(5):684-6. PubMed ID: 22134710 [TBL] [Abstract][Full Text] [Related]
7. Lysosome-targeted two-photon fluorescent probe for detection of hypobromous acid in vitro and in vivo. Ma C; Ma M; Zhang Y; Zhu X; Zhou L; Fang R; Liu X; Zhang H Spectrochim Acta A Mol Biomol Spectrosc; 2019 Apr; 212():48-54. PubMed ID: 30594853 [TBL] [Abstract][Full Text] [Related]
8. "Off-on" red-emitting fluorescent probes with large Stokes shifts for nitric oxide imaging in living cells. Chen JB; Zhang HX; Guo XF; Wang H; Zhang HS Anal Bioanal Chem; 2013 Sep; 405(23):7447-56. PubMed ID: 23846591 [TBL] [Abstract][Full Text] [Related]
9. The synthesis of a novel near-infrared fluorescent probe and its application in imaging of living cells. Sun C; Cai J; Chen J; Wu Y; Wang P; Zhou G; Zong X; Chen B; Lv Y; Ji M Appl Biochem Biotechnol; 2015 Feb; 175(3):1644-50. PubMed ID: 25416478 [TBL] [Abstract][Full Text] [Related]
10. Hypothiocyanous acid is a more potent inducer of apoptosis and protein thiol depletion in murine macrophage cells than hypochlorous acid or hypobromous acid. Lloyd MM; van Reyk DM; Davies MJ; Hawkins CL Biochem J; 2008 Sep; 414(2):271-80. PubMed ID: 18459943 [TBL] [Abstract][Full Text] [Related]
11. An Ultrasensitive Cyclization-Based Fluorescent Probe for Imaging Native HOBr in Live Cells and Zebrafish. Xu K; Luan D; Wang X; Hu B; Liu X; Kong F; Tang B Angew Chem Int Ed Engl; 2016 Oct; 55(41):12751-4. PubMed ID: 27629766 [TBL] [Abstract][Full Text] [Related]
12. Selective Monitoring and Imaging of Eosinophil Peroxidase Activity with a J-Aggregating Probe. Kim TI; Hwang B; Lee B; Bae J; Kim Y J Am Chem Soc; 2018 Sep; 140(37):11771-11776. PubMed ID: 30156836 [TBL] [Abstract][Full Text] [Related]
13. A near-IR reversible fluorescent probe modulated by selenium for monitoring peroxynitrite and imaging in living cells. Yu F; Li P; Li G; Zhao G; Chu T; Han K J Am Chem Soc; 2011 Jul; 133(29):11030-3. PubMed ID: 21702509 [TBL] [Abstract][Full Text] [Related]
14. The fluorescein-derived dye aminophenyl fluorescein is a suitable tool to detect hypobromous acid (HOBr)-producing activity in eosinophils. Flemmig J; Zschaler J; Remmler J; Arnhold J J Biol Chem; 2012 Aug; 287(33):27913-23. PubMed ID: 22718769 [TBL] [Abstract][Full Text] [Related]
15. Kinetics and mechanism of the comproportionation reaction between oxoammonium cation and hydroxylamine derived from cyclic nitroxides. Israeli A; Patt M; Oron M; Samuni A; Kohen R; Goldstein S Free Radic Biol Med; 2005 Feb; 38(3):317-24. PubMed ID: 15629861 [TBL] [Abstract][Full Text] [Related]
16. Near-infrared fluorescence probe for hydrogen peroxide detection: design, synthesis, and application in living systems. Zhang J; Shi L; Li Z; Li D; Tian X; Zhang C Analyst; 2019 Jun; 144(11):3643-3648. PubMed ID: 31073567 [TBL] [Abstract][Full Text] [Related]
17. Reaction of 3',5'-di-O-acetyl-2'-deoxyguansoine with hypobromous acid. Suzuki T; Nakamura A; Inukai M Bioorg Med Chem; 2013 Jul; 21(13):3674-9. PubMed ID: 23685182 [TBL] [Abstract][Full Text] [Related]
18. Dual-functional probes for sequential thiol and redox homeostasis sensing in live cells. Ma T; Ding H; Xu H; Lv Y; Liu H; Wang H; Tian Z Analyst; 2015 Jan; 140(1):322-9. PubMed ID: 25406724 [TBL] [Abstract][Full Text] [Related]
19. Characterisation of peroxidasin activity in isolated extracellular matrix and direct detection of hypobromous acid formation. Bathish B; Turner R; Paumann-Page M; Kettle AJ; Winterbourn CC Arch Biochem Biophys; 2018 May; 646():120-127. PubMed ID: 29626421 [TBL] [Abstract][Full Text] [Related]
20. Fluorescent Probes for Selective Recognition of Hypobromous Acid: Achievements and Future Perspectives. Fang Y; Dehaen W Molecules; 2021 Jan; 26(2):. PubMed ID: 33445736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]