These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 22735494)

  • 41. Highly-ordered, 3D petal-like array for surface-enhanced Raman scattering.
    Qian C; Ni C; Yu W; Wu W; Mao H; Wang Y; Xu J
    Small; 2011 Jul; 7(13):1800-6. PubMed ID: 21608122
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Self-assembly of hydrophobic gold nanoparticles and adhesion property of their assembled monolayer films.
    Lin G; Lu W
    J Colloid Interface Sci; 2017 Sep; 501():241-247. PubMed ID: 28458224
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence.
    Orendorff CJ; Gole A; Sau TK; Murphy CJ
    Anal Chem; 2005 May; 77(10):3261-6. PubMed ID: 15889917
    [TBL] [Abstract][Full Text] [Related]  

  • 44. High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate.
    Lu Y; Liu GL; Lee LP
    Nano Lett; 2005 Jan; 5(1):5-9. PubMed ID: 15792403
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering.
    Li M; Zhang J; Suri S; Sooter LJ; Ma D; Wu N
    Anal Chem; 2012 Mar; 84(6):2837-42. PubMed ID: 22380526
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Nanoparticle-nanoparticle vs. nanoparticle-substrate hot spot contributions to the SERS signal: studying Raman labelled monomers, dimers and trimers.
    Sergiienko S; Moor K; Gudun K; Yelemessova Z; Bukasov R
    Phys Chem Chem Phys; 2017 Feb; 19(6):4478-4487. PubMed ID: 28120963
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Use of a fractal-like gold nanostructure in surface-enhanced raman spectroscopy for detection of selected food contaminants.
    He L; Kim NJ; Li H; Hu Z; Lin M
    J Agric Food Chem; 2008 Nov; 56(21):9843-7. PubMed ID: 18828599
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies.
    Chu Y; Banaee MG; Crozier KB
    ACS Nano; 2010 May; 4(5):2804-10. PubMed ID: 20429521
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanoparticle-mirror sandwich substrates for surface-enhanced Raman scattering.
    Daniels JK; Chumanov G
    J Phys Chem B; 2005 Sep; 109(38):17936-42. PubMed ID: 16853302
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Preparation of gold colloid monolayer by immunological identification.
    Xu W; Xu S; Ji X; Song B; Yuan H; Ma L; Bai Y
    Colloids Surf B Biointerfaces; 2005 Feb; 40(3-4):169-72. PubMed ID: 15708508
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications.
    Li M; Cushing SK; Zhang J; Lankford J; Aguilar ZP; Ma D; Wu N
    Nanotechnology; 2012 Mar; 23(11):115501. PubMed ID: 22383452
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A reusable surface-enhanced Raman scattering (SERS) substrate prepared by atomic layer deposition of alumina on a multi-layer gold and silver film.
    Mahurin SM; John J; Sepaniak MJ; Dai S
    Appl Spectrosc; 2011 Apr; 65(4):417-22. PubMed ID: 21396189
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection.
    He S; Liu KK; Su S; Yan J; Mao X; Wang D; He Y; Li LJ; Song S; Fan C
    Anal Chem; 2012 May; 84(10):4622-7. PubMed ID: 22497579
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gold nanoparticle mediated formation of aligned nanotube composite films.
    Cui J; Daghlian CP; Gibson UJ
    J Phys Chem B; 2005 Jun; 109(23):11456-60. PubMed ID: 16852402
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surface-enhanced Raman scattering system of sample molecules in silver-modified silver film.
    Niu Z; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Mar; 66(3):712-6. PubMed ID: 16876472
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Surface-enhanced Raman spectroscopic detection of a bacteria biomarker using gold nanoparticle immobilized substrates.
    Cheng HW; Huan SY; Wu HL; Shen GL; Yu RQ
    Anal Chem; 2009 Dec; 81(24):9902-12. PubMed ID: 19928907
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A high sensitive assay platform based on surface-enhanced Raman scattering for quantification of protease activity.
    Yazgan NN; Boyaci IH; Temur E; Tamer U; Topcu A
    Talanta; 2010 Jul; 82(2):631-9. PubMed ID: 20602947
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Time-dependent and symmetry-selective charge-transfer contribution to SERS in gold nanoparticle aggregates.
    Yoon JH; Park JS; Yoon S
    Langmuir; 2009 Nov; 25(21):12475-80. PubMed ID: 19817481
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Self-Assembled Large-Scale Monolayer of Au Nanoparticles at the Air/Water Interface Used as a SERS Substrate.
    Guo Q; Xu M; Yuan Y; Gu R; Yao J
    Langmuir; 2016 May; 32(18):4530-7. PubMed ID: 27101361
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Surface-Enhanced Raman Scattering (SERS) Active Gold Nanoparticles Decorated on a Porous Polymer Filter.
    Chen L; Yan H; Xue X; Jiang D; Cai Y; Liang D; Jung YM; Han XX; Zhao B
    Appl Spectrosc; 2017 Jul; 71(7):1543-1550. PubMed ID: 28441033
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.