These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 22735542)

  • 1. Constitutive modeling of mouse carotid arteries using experimentally measured microstructural parameters.
    Wan W; Dixon JB; Gleason RL
    Biophys J; 2012 Jun; 102(12):2916-25. PubMed ID: 22735542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructural quantification of collagen fiber orientations and its integration in constitutive modeling of the porcine carotid artery.
    Sáez P; García A; Peña E; Gasser TC; Martínez MA
    Acta Biomater; 2016 Mar; 33():183-93. PubMed ID: 26827780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collagen fiber interweaving is central to sclera stiffness.
    Wang B; Hua Y; Brazile BL; Yang B; Sigal IA
    Acta Biomater; 2020 Sep; 113():429-437. PubMed ID: 32585309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential mechanical response and microstructural organization between non-human primate femoral and carotid arteries.
    Wang R; Raykin J; Li H; Gleason RL; Brewster LP
    Biomech Model Mechanobiol; 2014 Oct; 13(5):1041-51. PubMed ID: 24532266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microstructurally motivated constitutive modeling of mouse arteries cultured under altered axial stretch.
    Hansen L; Wan W; Gleason RL
    J Biomech Eng; 2009 Oct; 131(10):101015. PubMed ID: 19831485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reliability of structure tensors in representing soft tissues structure.
    Lanir Y; Namani R
    J Mech Behav Biomed Mater; 2015 Jun; 46():222-8. PubMed ID: 25828155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dysfunction in elastic fiber formation in fibulin-5 null mice abrogates the evolution in mechanical response of carotid arteries during maturation.
    Wan W; Gleason RL
    Am J Physiol Heart Circ Physiol; 2013 Mar; 304(5):H674-86. PubMed ID: 23241326
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Affine kinematics in planar fibrous connective tissues: an experimental investigation.
    Jayyosi C; Affagard JS; Ducourthial G; Bonod-Bidaud C; Lynch B; Bancelin S; Ruggiero F; Schanne-Klein MC; Allain JM; Bruyère-Garnier K; Coret M
    Biomech Model Mechanobiol; 2017 Aug; 16(4):1459-1473. PubMed ID: 28357604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementing a micromechanical model into a finite element code to simulate the mechanical and microstructural response of arteries.
    Bianchi D; Morin C; Badel P
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2553-2566. PubMed ID: 32607921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive study of layer-specific morphological changes in the microstructure of carotid arteries under uniaxial load.
    Krasny W; Morin C; Magoariec H; Avril S
    Acta Biomater; 2017 Jul; 57():342-351. PubMed ID: 28499632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematics of collagen fibers in carotid arteries under tension-inflation loading.
    Krasny W; Magoariec H; Morin C; Avril S
    J Mech Behav Biomed Mater; 2018 Jan; 77():718-726. PubMed ID: 28847434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arterial mechanics considering the structural and mechanical contributions of ECM constituents.
    Wang Y; Zeinali-Davarani S; Zhang Y
    J Biomech; 2016 Aug; 49(12):2358-65. PubMed ID: 26947034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiscale Computational Model Predicts Mouse Skin Kinematics Under Tensile Loading.
    Witt NJ; Woessner AE; Quinn KP; Sander EA
    J Biomech Eng; 2022 Apr; 144(4):. PubMed ID: 34729595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A theoretical and non-destructive experimental approach for direct inclusion of measured collagen orientation and recruitment into mechanical models of the artery wall.
    Hill MR; Duan X; Gibson GA; Watkins S; Robertson AM
    J Biomech; 2012 Mar; 45(5):762-71. PubMed ID: 22305290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An optomechanogram for assessment of the structural and mechanical properties of tissues.
    Lee W; Ostadi Moghaddam A; Shen S; Phillips H; McFarlin BL; Wagoner Johnson AJ; Toussaint KC
    Sci Rep; 2021 Jan; 11(1):324. PubMed ID: 33431940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting and understanding arterial elasticity from key microstructural features by bidirectional deep learning.
    Linka K; Cavinato C; Humphrey JD; Cyron CJ
    Acta Biomater; 2022 Jul; 147():63-72. PubMed ID: 35643194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constitutive modeling using structural information on collagen fiber direction and dispersion in human superficial femoral artery specimens of different ages.
    Jadidi M; Sherifova S; Sommer G; Kamenskiy A; Holzapfel GA
    Acta Biomater; 2021 Feb; 121():461-474. PubMed ID: 33279711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biaxial tensile testing and constitutive modeling of human supraspinatus tendon.
    Szczesny SE; Peloquin JM; Cortes DH; Kadlowec JA; Soslowsky LJ; Elliott DM
    J Biomech Eng; 2012 Feb; 134(2):021004. PubMed ID: 22482671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural parameters defining distribution of collagen fiber directions in human carotid arteries.
    Fischer J; Heidrová A; Hermanová M; Bednařík Z; Joukal M; Burša J
    J Mech Behav Biomed Mater; 2024 May; 153():106494. PubMed ID: 38507995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-based constitutive model can accurately predict planar biaxial properties of aortic wall tissue.
    Polzer S; Gasser TC; Novak K; Man V; Tichy M; Skacel P; Bursa J
    Acta Biomater; 2015 Mar; 14():133-45. PubMed ID: 25458466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.