BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 22735708)

  • 1. Co-clustering phenome-genome for phenotype classification and disease gene discovery.
    Hwang T; Atluri G; Xie M; Dey S; Hong C; Kumar V; Kuang R
    Nucleic Acids Res; 2012 Oct; 40(19):e146. PubMed ID: 22735708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network-based Phenome-Genome Association Prediction by Bi-Random Walk.
    Xie M; Xu Y; Zhang Y; Hwang T; Kuang R
    PLoS One; 2015; 10(5):e0125138. PubMed ID: 25933025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inferring disease and gene set associations with rank coherence in networks.
    Hwang T; Zhang W; Xie M; Liu J; Kuang R
    Bioinformatics; 2011 Oct; 27(19):2692-9. PubMed ID: 21824970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian semi-nonnegative matrix tri-factorization to identify pathways associated with cancer phenotypes.
    Park S; Kar N; Cheong JH; Hwang TH
    Pac Symp Biocomput; 2020; 25():427-438. PubMed ID: 31797616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inferring gene-phenotype associations via global protein complex network propagation.
    Yang P; Li X; Wu M; Kwoh CK; Ng SK
    PLoS One; 2011; 6(7):e21502. PubMed ID: 21799737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer learning across ontologies for phenome-genome association prediction.
    Petegrosso R; Park S; Hwang TH; Kuang R
    Bioinformatics; 2017 Feb; 33(4):529-536. PubMed ID: 27797759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prioritizing disease genes with an improved dual label propagation framework.
    Zhang Y; Liu J; Liu X; Fan X; Hong Y; Wang Y; Huang Y; Xie M
    BMC Bioinformatics; 2018 Feb; 19(1):47. PubMed ID: 29422030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network.
    Lin L; Yang T; Fang L; Yang J; Yang F; Zhao J
    BMC Syst Biol; 2017 Dec; 11(1):121. PubMed ID: 29212543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pathway networks generated from human disease phenome.
    Cirincione AG; Clark KL; Kann MG
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):75. PubMed ID: 30255817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards prediction and prioritization of disease genes by the modularity of human phenome-genome assembled network.
    Jiang JQ; Dress AW; Chen M
    J Integr Bioinform; 2010 Nov; 7(2):. PubMed ID: 21098881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LAMP: disease classification derived from layered assessment on modules and pathways in the human gene network.
    Mi Z; Guo B; Yang X; Yin Z; Zheng Z
    BMC Bioinformatics; 2020 Oct; 21(1):487. PubMed ID: 33126852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotypic overlap in the contribution of individual genes to CNV pathogenicity revealed by cross-species computational analysis of single-gene mutations in humans, mice and zebrafish.
    Doelken SC; Köhler S; Mungall CJ; Gkoutos GV; Ruef BJ; Smith C; Smedley D; Bauer S; Klopocki E; Schofield PN; Westerfield M; Robinson PN; Lewis SE
    Dis Model Mech; 2013 Mar; 6(2):358-72. PubMed ID: 23104991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prioritization of candidate disease genes by combining topological similarity and semantic similarity.
    Liu B; Jin M; Zeng P
    J Biomed Inform; 2015 Oct; 57():1-5. PubMed ID: 26173039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Annotating Diseases Using Human Phenotype Ontology Improves Prediction of Disease-Associated Long Non-coding RNAs.
    Le DH; Dao LTM
    J Mol Biol; 2018 Jul; 430(15):2219-2230. PubMed ID: 29758261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of homogeneous genetic architecture of multiple genetically correlated traits by block clustering of genome-wide associations.
    Gupta M; Cheung CL; Hsu YH; Demissie S; Cupples LA; Kiel DP; Karasik D
    J Bone Miner Res; 2011 Jun; 26(6):1261-71. PubMed ID: 21611967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression.
    Zhang SW; Shao DD; Zhang SY; Wang YB
    Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prioritizing candidate disease genes by network-based boosting of genome-wide association data.
    Lee I; Blom UM; Wang PI; Shim JE; Marcotte EM
    Genome Res; 2011 Jul; 21(7):1109-21. PubMed ID: 21536720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rare variants in drug target genes contributing to complex diseases, phenome-wide.
    Verma SS; Josyula N; Verma A; Zhang X; Veturi Y; Dewey FE; Hartzel DN; Lavage DR; Leader J; Ritchie MD; Pendergrass SA
    Sci Rep; 2018 Mar; 8(1):4624. PubMed ID: 29545597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global Single Clustering of Phenotype-Associated Human Aging Genes in the Co-Expression and Physical Interaction Networks: An OMIM-Based Investigative Review.
    M R; M A; H B; M O
    Arch Gerontol Geriatr; 2021; 96():104461. PubMed ID: 34171756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology.
    Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H
    J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.