BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 22735708)

  • 21. Prioritization of candidate disease genes by topological similarity between disease and protein diffusion profiles.
    Zhu J; Qin Y; Liu T; Wang J; Zheng X
    BMC Bioinformatics; 2013; 14 Suppl 5(Suppl 5):S5. PubMed ID: 23734762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integration of Human Protein Sequence and Protein-Protein Interaction Data by Graph Autoencoder to Identify Novel Protein-Abnormal Phenotype Associations.
    Liu Y; He R; Qu Y; Zhu Y; Li D; Ling X; Xia S; Li Z; Li D
    Cells; 2022 Aug; 11(16):. PubMed ID: 36010562
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predicting gene phenotype by multi-label multi-class model based on essential functional features.
    Chen L; Li Z; Zeng T; Zhang YH; Li H; Huang T; Cai YD
    Mol Genet Genomics; 2021 Jul; 296(4):905-918. PubMed ID: 33914130
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An integrated approach to inferring gene-disease associations in humans.
    Radivojac P; Peng K; Clark WT; Peters BJ; Mohan A; Boyle SM; Mooney SD
    Proteins; 2008 Aug; 72(3):1030-7. PubMed ID: 18300252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Context-sensitive network-based disease genetics prediction and its implications in drug discovery.
    Chen Y; Xu R
    Bioinformatics; 2017 Apr; 33(7):1031-1039. PubMed ID: 28062449
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metrical Consistency NMF for Predicting Gene-Phenotype Associations.
    Han S; Cai H; Che D; Zhang Y; Huang Y; Xie M
    Interdiscip Sci; 2018 Mar; 10(1):189-194. PubMed ID: 28391494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A cross-species bi-clustering approach to identifying conserved co-regulated genes.
    Sun J; Jiang Z; Tian X; Bi J
    Bioinformatics; 2016 Jun; 32(12):i137-i146. PubMed ID: 27307610
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mining phenotypes for gene function prediction.
    Groth P; Weiss B; Pohlenz HD; Leser U
    BMC Bioinformatics; 2008 Mar; 9():136. PubMed ID: 18315868
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A tripartite clustering analysis on microRNA, gene and disease model.
    Shen C; Liu Y
    J Bioinform Comput Biol; 2012 Feb; 10(1):1240007. PubMed ID: 22809308
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PhenomeNET: a whole-phenome approach to disease gene discovery.
    Hoehndorf R; Schofield PN; Gkoutos GV
    Nucleic Acids Res; 2011 Oct; 39(18):e119. PubMed ID: 21737429
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inference of gene-phenotype associations via protein-protein interaction and orthology.
    Wang P; Lai WF; Li MJ; Xu F; Yalamanchili HK; Lovell-Badge R; Wang J
    PLoS One; 2013; 8(10):e77478. PubMed ID: 24194887
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of gene-phenotype associations in humans, mice, and plants using phenologs.
    Woods JO; Singh-Blom UM; Laurent JM; McGary KL; Marcotte EM
    BMC Bioinformatics; 2013 Jun; 14():203. PubMed ID: 23800157
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PhenPath: a tool for characterizing biological functions underlying different phenotypes.
    Babbi G; Martelli PL; Casadio R
    BMC Genomics; 2019 Jul; 20(Suppl 8):548. PubMed ID: 31307376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Linking human diseases to animal models using ontology-based phenotype annotation.
    Washington NL; Haendel MA; Mungall CJ; Ashburner M; Westerfield M; Lewis SE
    PLoS Biol; 2009 Nov; 7(11):e1000247. PubMed ID: 19956802
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction and validation of gene-disease associations using methods inspired by social network analyses.
    Singh-Blom UM; Natarajan N; Tewari A; Woods JO; Dhillon IS; Marcotte EM
    PLoS One; 2013; 8(5):e58977. PubMed ID: 23650495
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recursive expectation-maximization clustering: a method for identifying buffering mechanisms composed of phenomic modules.
    Guo J; Tian D; McKinney BA; Hartman JL
    Chaos; 2010 Jun; 20(2):026103. PubMed ID: 20590332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of Human Phenotype Ontology terms by means of hierarchical ensemble methods.
    Notaro M; Schubach M; Robinson PN; Valentini G
    BMC Bioinformatics; 2017 Oct; 18(1):449. PubMed ID: 29025394
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Decoding Neuromuscular Disorders Using Phenotypic Clusters Obtained From Co-Occurrence Networks.
    Díaz-Santiago E; Claros MG; Yahyaoui R; de Diego-Otero Y; Calvo R; Hoenicka J; Palau F; Ranea JAG; Perkins JR
    Front Mol Biosci; 2021; 8():635074. PubMed ID: 34046427
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modularity-based credible prediction of disease genes and detection of disease subtypes on the phenotype-gene heterogeneous network.
    Yao X; Hao H; Li Y; Li S
    BMC Syst Biol; 2011 May; 5():79. PubMed ID: 21599985
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of human disease-related gene clusters by clustering analysis.
    Sun PG; Gao L; Han S
    Int J Biol Sci; 2011 Jan; 7(1):61-73. PubMed ID: 21278917
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.