BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 22735778)

  • 1. Porphyrins from a metagenomic library of the marine sponge Discodermia calyx.
    He R; Wakimoto T; Takeshige Y; Egami Y; Kenmoku H; Ito T; Wang B; Asakawa Y; Abe I
    Mol Biosyst; 2012 Sep; 8(9):2334-8. PubMed ID: 22735778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indole-porphyrin hybrids produced by metagenomics.
    Yang XL; Wakimoto T; Takeshige Y; He R; Egami Y; Awakawa T; Abe I
    Bioorg Med Chem Lett; 2013 Jul; 23(13):3810-3. PubMed ID: 23707050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metagenomic approaches to identify and isolate bioactive natural products from microbiota of marine sponges.
    Gurgui C; Piel J
    Methods Mol Biol; 2010; 668():247-64. PubMed ID: 20830569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterologously expressed β-hydroxyl fatty acids from a metagenomic library of a marine sponge.
    He R; Wakimoto T; Egami Y; Kenmoku H; Ito T; Asakawa Y; Abe I
    Bioorg Med Chem Lett; 2012 Dec; 22(24):7322-5. PubMed ID: 23127887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indole Derivatives Produced by the Metagenome Genes of the Escherichia coli-Harboring Marine Sponge Discodermia calyx.
    Liu FL; Yang XL
    Molecules; 2017 Apr; 22(5):. PubMed ID: 28441364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a metagenomic library for the marine sponge Halichondria okadai.
    Abe T; Sahin FP; Akiyama K; Naito T; Kishigami M; Miyamoto K; Sakakibara Y; Uemura D
    Biosci Biotechnol Biochem; 2012; 76(4):633-9. PubMed ID: 22484923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of porphyrin intermediates in Escherichia coli carrying soil metagenomic genes.
    Kim JS; Lim HK; Lee MH; Park JH; Hwang EC; Moon BJ; Lee SW
    FEMS Microbiol Lett; 2009 Jun; 295(1):42-9. PubMed ID: 19473249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metagenomic Analysis of the Sponge Discodermia Reveals the Production of the Cyanobacterial Natural Product Kasumigamide by 'Entotheonella'.
    Nakashima Y; Egami Y; Kimura M; Wakimoto T; Abe I
    PLoS One; 2016; 11(10):e0164468. PubMed ID: 27732651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metagenomic approaches to exploit the biotechnological potential of the microbial consortia of marine sponges.
    Kennedy J; Marchesi JR; Dobson AD
    Appl Microbiol Biotechnol; 2007 May; 75(1):11-20. PubMed ID: 17318533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A polyphasic approach to the exploration of collagenolytic activity in the bacterial community associated with the marine sponge Cymbastela concentrica.
    Yung PY; Kjelleberg S; Thomas T
    FEMS Microbiol Lett; 2011 Aug; 321(1):24-9. PubMed ID: 21569081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction and screening of marine metagenomic libraries.
    Weiland N; Löscher C; Metzger R; Schmitz R
    Methods Mol Biol; 2010; 668():51-65. PubMed ID: 20830555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calyxamides A and B, cytotoxic cyclic peptides from the marine sponge Discodermia calyx.
    Kimura M; Wakimoto T; Egami Y; Tan KC; Ise Y; Abe I
    J Nat Prod; 2012 Feb; 75(2):290-4. PubMed ID: 22276742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of the bacterial symbiont Entotheonella sp. in the mesohyl of the marine sponge Discodermia sp.
    Brück WM; Sennett SH; Pomponi SA; Willenz P; McCarthy PJ
    ISME J; 2008 Mar; 2(3):335-9. PubMed ID: 18256706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of indole antibiotics induced by exogenous gene derived from sponge metagenomes.
    Takeshige Y; Egami Y; Wakimoto T; Abe I
    Mol Biosyst; 2015 May; 11(5):1290-4. PubMed ID: 25828760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterizing the microbiomes of Antarctic sponges: a functional metagenomic approach.
    Moreno-Pino M; Cristi A; Gillooly JF; Trefault N
    Sci Rep; 2020 Jan; 10(1):645. PubMed ID: 31959785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calyculins, potent antitumour metabolites from the marine sponge Discodermia calyx: biological activities.
    Kato Y; Fusetani N; Matsunaga S; Hashimoto K
    Drugs Exp Clin Res; 1988; 14(12):723-8. PubMed ID: 2472940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diversity of polyketide synthase genes from bacteria associated with the marine sponge Pseudoceratina clavata: culture-dependent and culture-independent approaches.
    Kim TK; Fuerst JA
    Environ Microbiol; 2006 Aug; 8(8):1460-70. PubMed ID: 16872408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Culture-independent nested PCR method reveals high diversity of actinobacteria associated with the marine sponges Hymeniacidon perleve and Sponge sp.
    Xin Y; Huang J; Deng M; Zhang W
    Antonie Van Leeuwenhoek; 2008 Nov; 94(4):533-42. PubMed ID: 18670903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity of aerobic and anaerobic ammonia-oxidizing bacteria in marine sponges.
    Mohamed NM; Saito K; Tal Y; Hill RT
    ISME J; 2010 Jan; 4(1):38-48. PubMed ID: 19617876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Widespread known and novel phosphonate utilization pathways in marine bacteria revealed by functional screening and metagenomic analyses.
    Martinez A; Tyson GW; Delong EF
    Environ Microbiol; 2010 Jan; 12(1):222-38. PubMed ID: 19788654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.