These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 22735958)

  • 1. Transgenic expression of therapeutic proteins in Arabidopsis thaliana seed.
    Nykiforuk CL; Boothe JG
    Methods Mol Biol; 2012; 899():239-64. PubMed ID: 22735958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transgenic expression and recovery of biologically active recombinant human insulin from Arabidopsis thaliana seeds.
    Nykiforuk CL; Boothe JG; Murray EW; Keon RG; Goren HJ; Markley NA; Moloney MM
    Plant Biotechnol J; 2006 Jan; 4(1):77-85. PubMed ID: 17177787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery and purification of plant-made recombinant proteins.
    Wilken LR; Nikolov ZL
    Biotechnol Adv; 2012; 30(2):419-33. PubMed ID: 21843625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences.
    De Jaeger G; Scheffer S; Jacobs A; Zambre M; Zobell O; Goossens A; Depicker A; Angenon G
    Nat Biotechnol; 2002 Dec; 20(12):1265-8. PubMed ID: 12415287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular strategies to engineer transgenic rice seed compartments for large-scale production of plant-made pharmaceuticals.
    Greenham T; Altosaar I
    Methods Mol Biol; 2013; 956():311-26. PubMed ID: 23135861
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis thaliana floral dip transformation method.
    Bent A
    Methods Mol Biol; 2006; 343():87-103. PubMed ID: 16988336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Transformation of full-length gene of mouse/human chimeric antibody against Hantaan virus into Arabidopsis thaliana].
    Zhou W; Wu XA; Luo W; Hu G; Zhang FL; Bai WT; Zhang L; Yu L; Shi MY; Xu ZK
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2008 Jan; 24(1):49-51. PubMed ID: 18177619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-throughput screen for genes from castor that boost hydroxy fatty acid accumulation in seed oils of transgenic Arabidopsis.
    Lu C; Fulda M; Wallis JG; Browse J
    Plant J; 2006 Mar; 45(5):847-56. PubMed ID: 16460516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of a callus-specific selection system to develop transgenic rice seed accumulating a high level of recombinant protein.
    Wakasa Y; Takaiwa F
    Methods Mol Biol; 2012; 847():467-79. PubMed ID: 22351029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seed-based expression systems for plant molecular farming.
    Boothe J; Nykiforuk C; Shen Y; Zaplachinski S; Szarka S; Kuhlman P; Murray E; Morck D; Moloney MM
    Plant Biotechnol J; 2010 Jun; 8(5):588-606. PubMed ID: 20500681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of antibody fragments in Arabidopsis seeds.
    Van Droogenbroeck B; De Wilde K; Depicker A
    Methods Mol Biol; 2009; 483():89-101. PubMed ID: 19183895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of biologically active human insulin-like growth factor 1 in Arabidopsis thaliana seeds via oleosin fusion technology.
    Li W; Li L; Li K; Lin J; Sun X; Tang K
    Biotechnol Appl Biochem; 2011 May; 58(3):139-46. PubMed ID: 21679237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing Arabidopsis thaliana as a platform for the seed-based production of recombinant proteins.
    Demeyer R; Vereecken F; De Loose M; Van Droogenbroeck B
    Commun Agric Appl Biol Sci; 2008; 73(1):27-31. PubMed ID: 18831240
    [No Abstract]   [Full Text] [Related]  

  • 14. Efficient and high-throughput vector construction and Agrobacterium-mediated transformation of Arabidopsis thaliana suspension-cultured cells for functional genomics.
    Ogawa Y; Dansako T; Yano K; Sakurai N; Suzuki H; Aoki K; Noji M; Saito K; Shibata D
    Plant Cell Physiol; 2008 Feb; 49(2):242-50. PubMed ID: 18178967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale T-DNA mutagenesis in Arabidopsis for functional genomic analysis.
    Galbiati M; Moreno MA; Nadzan G; Zourelidou M; Dellaporta SL
    Funct Integr Genomics; 2000 May; 1(1):25-34. PubMed ID: 11793219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of recombinant proteins in suspension-cultured plant cells.
    Plasson C; Michel R; Lienard D; Saint-Jore-Dupas C; Sourrouille C; de March GG; Gomord V
    Methods Mol Biol; 2009; 483():145-61. PubMed ID: 19183898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In planta Agrobacterium-mediated transformation by vacuum infiltration.
    Tague BW; Mantis J
    Methods Mol Biol; 2006; 323():215-23. PubMed ID: 16739579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant virus expression vectors set the stage as production platforms for biopharmaceutical proteins.
    Hefferon KL
    Virology; 2012 Nov; 433(1):1-6. PubMed ID: 22979981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method.
    Zhang X; Henriques R; Lin SS; Niu QW; Chua NH
    Nat Protoc; 2006; 1(2):641-6. PubMed ID: 17406292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Handling Arabidopsis plants: growth, preservation of seeds, transformation, and genetic crosses.
    Rivero L; Scholl R; Holomuzki N; Crist D; Grotewold E; Brkljacic J
    Methods Mol Biol; 2014; 1062():3-25. PubMed ID: 24057358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.