BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 22736107)

  • 1. Changes in physiology and protein abundance in salt-stressed wheat chloroplasts.
    Kamal AH; Cho K; Kim DE; Uozumi N; Chung KY; Lee SY; Choi JS; Cho SW; Shin CS; Woo SH
    Mol Biol Rep; 2012 Sep; 39(9):9059-74. PubMed ID: 22736107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The wheat chloroplastic proteome.
    Kamal AH; Cho K; Choi JS; Bae KH; Komatsu S; Uozumi N; Woo SH
    J Proteomics; 2013 Nov; 93():326-42. PubMed ID: 23563086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of salt-responsive proteins in the leaves of mangrove Kandelia candel during short-term stress.
    Wang L; Liu X; Liang M; Tan F; Liang W; Chen Y; Lin Y; Huang L; Xing J; Chen W
    PLoS One; 2014; 9(1):e83141. PubMed ID: 24416157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress.
    Muneer S; Park YG; Manivannan A; Soundararajan P; Jeong BR
    Int J Mol Sci; 2014 Nov; 15(12):21803-24. PubMed ID: 25431925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamine synthetase and glutamate dehydrogenase contribute differentially to proline accumulation in leaves of wheat (Triticum aestivum) seedlings exposed to different salinity.
    Wang ZQ; Yuan YZ; Ou JQ; Lin QH; Zhang CF
    J Plant Physiol; 2007 Jun; 164(6):695-701. PubMed ID: 16777263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of the chloroplast proteomes of a wheat (Triticum aestivum L.) single seed descent line and its parents.
    He ZH; Li HW; Shen Y; Li ZS; Mi H
    J Plant Physiol; 2013 Sep; 170(13):1139-47. PubMed ID: 23683508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigating the impact of elevated levels of ozone on tropical wheat using integrated phenotypical, physiological, biochemical, and proteomics approaches.
    Sarkar A; Rakwal R; Bhushan Agrawal S; Shibato J; Ogawa Y; Yoshida Y; Kumar Agrawal G; Agrawal M
    J Proteome Res; 2010 Sep; 9(9):4565-84. PubMed ID: 20701290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative proteomic analysis of salt-responsive proteins in canola roots by 2-DE and MALDI-TOF MS.
    Kholghi M; Toorchi M; Bandehagh A; Ostendorp A; Ostendorp S; Hanhart P; Kehr J
    Biochim Biophys Acta Proteins Proteom; 2019 Mar; 1867(3):227-236. PubMed ID: 30611781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt-adaptive strategies in oil seed crop Ricinus communis early seedlings (cotyledon vs. true leaf) revealed from proteomics analysis.
    Wang Y; Peng X; Salvato F; Wang Y; Yan X; Zhou Z; Lin J
    Ecotoxicol Environ Saf; 2019 Apr; 171():12-25. PubMed ID: 30593996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and comparative proteomic analysis reveals different drought responses in roots and leaves of drought-tolerant wild wheat (Triticum boeoticum).
    Liu H; Sultan MA; Liu XL; Zhang J; Yu F; Zhao HX
    PLoS One; 2015; 10(4):e0121852. PubMed ID: 25859656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coumarin pretreatment alleviates salinity stress in wheat seedlings.
    Saleh AM; Madany MM
    Plant Physiol Biochem; 2015 Mar; 88():27-35. PubMed ID: 25634803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein profile analysis of salt-responsive proteins in leaves and roots in two cultivars of creeping bentgrass differing in salinity tolerance.
    Xu C; Sibicky T; Huang B
    Plant Cell Rep; 2010 Jun; 29(6):595-615. PubMed ID: 20361191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam.
    Zhu Z; Chen J; Zheng HL
    Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remodeling of chloroplast proteome under salinity affects salt tolerance of Festuca arundinacea.
    Pawłowicz I; Waśkiewicz A; Perlikowski D; Rapacz M; Ratajczak D; Kosmala A
    Photosynth Res; 2018 Sep; 137(3):475-492. PubMed ID: 29881986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice.
    Liu CW; Chang TS; Hsu YK; Wang AZ; Yen HC; Wu YP; Wang CS; Lai CC
    Proteomics; 2014 Aug; 14(15):1759-75. PubMed ID: 24841874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinct salinity-induced changes in wheat metabolic machinery in different root tissue types.
    Dissanayake BM; Staudinger C; Munns R; Taylor NL; Millar AH
    J Proteomics; 2022 Mar; 256():104502. PubMed ID: 35093570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated physiological and transcriptional dissection reveals the core genes involving nutrient transport and osmoregulatory substance biosynthesis in allohexaploid wheat seedlings under salt stress.
    Chen JF; Liu Y; Zhang TY; Zhou ZF; Huang JY; Zhou T; Hua YP
    BMC Plant Biol; 2022 Oct; 22(1):502. PubMed ID: 36289462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteome analysis of wheat leaf under salt stress by two-dimensional difference gel electrophoresis (2D-DIGE).
    Gao L; Yan X; Li X; Guo G; Hu Y; Ma W; Yan Y
    Phytochemistry; 2011 Jul; 72(10):1180-91. PubMed ID: 21257186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gel-free/label-free proteomic analysis of wheat shoot in stress tolerant varieties under iron nanoparticles exposure.
    Yasmeen F; Raja NI; Razzaq A; Komatsu S
    Biochim Biophys Acta; 2016 Nov; 1864(11):1586-98. PubMed ID: 27530299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative proteomic analysis of salt response proteins in seedling roots of two wheat varieties.
    Guo G; Ge P; Ma C; Li X; Lv D; Wang S; Ma W; Yan Y
    J Proteomics; 2012 Mar; 75(6):1867-85. PubMed ID: 22245046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.