BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 22736576)

  • 1. Concise review: human pluripotent stem cells in the treatment of spinal cord injury.
    Lukovic D; Moreno Manzano V; Stojkovic M; Bhattacharya SS; Erceg S
    Stem Cells; 2012 Sep; 30(9):1787-92. PubMed ID: 22736576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells?
    Ronaghi M; Erceg S; Moreno-Manzano V; Stojkovic M
    Stem Cells; 2010 Jan; 28(1):93-9. PubMed ID: 19904738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are induced pluripotent stem cells the future of cell-based regenerative therapies for spinal cord injury?
    Salewski RP; Eftekharpour E; Fehlings MG
    J Cell Physiol; 2010 Mar; 222(3):515-21. PubMed ID: 20020443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo generation of neural tumors from neoplastic pluripotent stem cells models early human pediatric brain tumor formation.
    Werbowetski-Ogilvie TE; Morrison LC; Fiebig-Comyn A; Bhatia M
    Stem Cells; 2012 Mar; 30(3):392-404. PubMed ID: 22213600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human embryonic stem cell-derived oligodendrocyte progenitors for the treatment of spinal cord injury.
    Faulkner J; Keirstead HS
    Transpl Immunol; 2005 Dec; 15(2):131-42. PubMed ID: 16412957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Current situation and progression of induced pluripotent stem cells in treating spinal cord injury].
    Liu W; Zhang SK; Yan M; Liu LD
    Zhongguo Gu Shang; 2011 Jul; 24(7):616-20. PubMed ID: 21870412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Therapeutic potential of induced pluripotent stem cells for spinal cord injury].
    Nori S; Tsuji O; Okada Y; Toyama Y; Okano H; Nakamura M
    Brain Nerve; 2012 Jan; 64(1):17-27. PubMed ID: 22223498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential roles of the neural stem cell in the restoration of the injured spinal cord: review of the literature.
    Kabatas S; Teng YD
    Turk Neurosurg; 2010 Apr; 20(2):103-10. PubMed ID: 20401836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human embryonic stem cell-derived neural precursor transplants in collagen scaffolds promote recovery in injured rat spinal cord.
    Hatami M; Mehrjardi NZ; Kiani S; Hemmesi K; Azizi H; Shahverdi A; Baharvand H
    Cytotherapy; 2009; 11(5):618-30. PubMed ID: 19548142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat.
    Kuh SU; Cho YE; Yoon DH; Kim KN; Ha Y
    Acta Neurochir (Wien); 2005 Sep; 147(9):985-92; discussion 992. PubMed ID: 16010451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-based transplantation strategies to promote plasticity following spinal cord injury.
    Ruff CA; Wilcox JT; Fehlings MG
    Exp Neurol; 2012 May; 235(1):78-90. PubMed ID: 21333647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell transplantation for spinal cord injury focusing on iPSCs.
    Nakamura M; Tsuji O; Nori S; Toyama Y; Okano H
    Expert Opin Biol Ther; 2012 Jul; 12(7):811-21. PubMed ID: 22519931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro generation of three-dimensional substrate-adherent embryonic stem cell-derived neural aggregates for application in animal models of neurological disorders.
    Hargus G; Cui YF; Dihné M; Bernreuther C; Schachner M
    Curr Protoc Stem Cell Biol; 2012 May; Chapter 2():Unit 2D.11. PubMed ID: 22605646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perspectives and future directions of human pluripotent stem cell-based therapies: lessons from Geron's clinical trial for spinal cord injury.
    Lukovic D; Stojkovic M; Moreno-Manzano V; Bhattacharya SS; Erceg S
    Stem Cells Dev; 2014 Jan; 23(1):1-4. PubMed ID: 23980630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increase of sensitivity to mechanical stimulus after transplantation of murine induced pluripotent stem cell-derived astrocytes in a rat spinal cord injury model.
    Hayashi K; Hashimoto M; Koda M; Naito AT; Murata A; Okawa A; Takahashi K; Yamazaki M
    J Neurosurg Spine; 2011 Dec; 15(6):582-93. PubMed ID: 21854127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural stem cells in regenerative medicine: bridging the gap.
    Ruff CA; Fehlings MG
    Panminerva Med; 2010 Jun; 52(2):125-47. PubMed ID: 20517196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adult-derived pluripotent stem cells.
    Faulkner SD; Vawda R; Fehlings MG
    World Neurosurg; 2014; 82(3-4):500-8. PubMed ID: 23948650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of embryonic neural stem cells and glial cell line-derived neurotrophic factor in the repair of spinal cord injury].
    Sun Y; Shi J; Fu SL; Lu PH; Xu XM
    Sheng Li Xue Bao; 2003 Jun; 55(3):349-54. PubMed ID: 12817305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transplantation of human embryonic stem cells and derivatives to the chick embryo.
    Goldstein RS
    Methods Mol Biol; 2010; 584():367-85. PubMed ID: 19907988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrathecal transplantation of stem cells by lumbar puncture for thoracic spinal cord injury in the rat.
    Mothe AJ; Bozkurt G; Catapano J; Zabojova J; Wang X; Keating A; Tator CH
    Spinal Cord; 2011 Sep; 49(9):967-73. PubMed ID: 21606931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.