BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22737285)

  • 1. Galectin-1, -3, -7 expressions in congenital and acquired pediatric cholesteatomas compared to external auditory canal skin.
    Vander Ghinst M; Remmelink M; Mansbach AL; Hassid S; Choufani G
    Clin Exp Otorhinolaryngol; 2012 Jun; 5(2):62-7. PubMed ID: 22737285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The levels of retinoid RARbeta receptors correlate with galectin-1, -3 and -8 expression in human cholesteatomas.
    Simon P; Decaestecker C; Choufani G; Delbrouck C; Danguy A; Salmon I; Zick Y; Kaltner H; Hassid S; Gabius HJ; Kiss R; Darro F
    Hear Res; 2001 Jun; 156(1-2):1-9. PubMed ID: 11377877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The levels of expression of galectin-3, but not of galectin-1 and galectin-8, correlate with apoptosis in human cholesteatomas.
    Sheikholeslam-Zadeh R; Decaestecker C; Delbrouck C; Danguy A; Salmon I; Zick Y; Kaltner H; Hassid S; Gabius HJ; Kiss R; Choufani G
    Laryngoscope; 2001 Jun; 111(6):1042-7. PubMed ID: 11404618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Comparative analysis of the proliferative capacity of cholesteatomas].
    Bernal Sprekelsen M; Ebmeyer J; Buchbinder A; Sudhoff H
    Acta Otorrinolaringol Esp; 2000 May; 51(4):299-307. PubMed ID: 10984952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of macrophage migration inhibitory factor (MIF) in human cholesteatomas and functional implications of correlations to recurrence status and to expression of matrix metalloproteinases-3/9, retinoic acid receptor-beta, and anti-apoptotic galectin-3.
    Choufani G; Ghanooni R; Decaestecker C; Delbrouck K; Simon P; Schüring MP; Zick Y; Hassid S; Gabius HJ; Kiss R
    Laryngoscope; 2001 Sep; 111(9):1656-62. PubMed ID: 11568623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of S100A1 in external auditory canal cholesteatoma.
    Naim R; Hormann K
    Oncol Rep; 2006 Oct; 16(4):671-5. PubMed ID: 16969478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of p53 protein in human middle ear cholesteatomas: pathogenetic implications.
    Albino AP; Reed JA; Bogdany JK; Sassoon J; Desloge RB; Parisier SC
    Am J Otol; 1998 Jan; 19(1):30-6. PubMed ID: 9455944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Protein Expression in Congenital and Acquired Cholesteatomas.
    Shin SH; Huang M; Kim SH; Choi JY
    PLoS One; 2015; 10(9):e0137011. PubMed ID: 26335306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased numbers of mast cells in human middle ear cholesteatomas: implications for treatment.
    Albino AP; Reed JA; Bogdany JK; Sassoon J; Parisier SC
    Am J Otol; 1998 May; 19(3):266-72. PubMed ID: 9596172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased expression of p63 and survivin in cholesteatomas.
    Park HR; Min SK; Min K; Jun SY; Seo J; Kim HJ
    Acta Otolaryngol; 2009 Mar; 129(3):268-72. PubMed ID: 18615329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The expressions and correlations of RAR-beta receptors and galectin-8 in human middle ear cholesteatoma].
    Peng L; Cui Y; Liu A
    Lin Chuang Er Bi Yan Hou Ke Za Zhi; 2004 Jul; 18(7):427-9. PubMed ID: 15499989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholesteatoma: a molecular and cellular puzzle.
    Albino AP; Kimmelman CP; Parisier SC
    Am J Otol; 1998 Jan; 19(1):7-19. PubMed ID: 9455941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in dendritic cells in congenital and acquired cholesteatomas.
    Frankel S; Berson S; Godwin T; Han JC; Parisier SC
    Laryngoscope; 1993 Nov; 103(11 Pt 1):1214-7. PubMed ID: 8231573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of Angiogenic, Pro-Apoptotic, and Pro-Inflammatory Factors in Congenital and Acquired Cholesteatomas.
    Rolesi R; Paciello F; Paludetti G; De Corso E; Sergi B; Fetoni AR
    J Pers Med; 2023 Jul; 13(8):. PubMed ID: 37623440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunohistochemical study of cell proliferation using BrdU labelling on tympanic membrane, external auditory canal and induced cholesteatoma in Mongolian gerbils.
    Park K; Chun YM; Park HJ; Lee YD
    Acta Otolaryngol; 1999; 119(8):874-9. PubMed ID: 10728926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Epithelium-stroma interaction in cholesteatoma of the middle ear].
    Jacob R; Welkoborsky HJ; Mann W
    Laryngorhinootologie; 2001 Jan; 80(1):11-7. PubMed ID: 11272241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of the epithelium stroma interaction of acquired middle ear cholesteatoma in children and adults.
    Welkoborsky HJ; Jacob RS; Hinni ML
    Eur Arch Otorhinolaryngol; 2007 Aug; 264(8):841-8. PubMed ID: 17541620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immune cell profile in invasive cholesteatomas: preliminary findings.
    Hussein MR; Sayed RH; Abu-Dief EE
    Exp Mol Pathol; 2010 Apr; 88(2):316-23. PubMed ID: 20045407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Clinical evaluation of congenital cholesteatoma of the middle ear].
    Kikuchi M; Yamamoto E; Shinohara S; Shiomi Y; Fujiwara K; Shiomi Y; Watanabe F; Tanabe M
    Nihon Jibiinkoka Gakkai Kaiho; 2003 Aug; 106(8):797-807. PubMed ID: 14513775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of the expression of E-cadherin, β-catenin, and β1 integrin in congenital and acquired cholesteatoma.
    Lee DW; Chung JH; Lee SH; Park CW; Kang SH; Oh YH; Pyo JY
    Eur Arch Otorhinolaryngol; 2016 Apr; 273(4):845-51. PubMed ID: 25864182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.