BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 22737686)

  • 1. Dynamic asymmetric organocatalysis: cooperative effects of weak interactions and conformational flexibility in asymmetric organocatalysts.
    Sohtome Y; Nagasawa K
    Chem Commun (Camb); 2012 Aug; 48(63):7777-89. PubMed ID: 22737686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking conformational flexibility and kinetics: catalytic 1,4-type Friedel-Crafts reactions of phenols utilizing 1,3-diamine-tethered guanidine/bisthiourea organocatalysts.
    Sohtome Y; Shin B; Horitsugi N; Noguchi K; Nagasawa K
    Chem Asian J; 2011 Sep; 6(9):2463-70. PubMed ID: 21761571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential enantiodivergent organocatalysis: reversibility in enantioswitching controlled by a conformationally flexible guanidine/bisthiourea organocatalyst.
    Sohtome Y; Yamaguchi T; Tanaka S; Nagasawa K
    Org Biomol Chem; 2013 May; 11(17):2780-6. PubMed ID: 23493979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent-dependent enantiodivergent Mannich-type reaction: utilizing a conformationally flexible guanidine/bisthiourea organocatalyst.
    Sohtome Y; Tanaka S; Takada K; Yamaguchi T; Nagasawa K
    Angew Chem Int Ed Engl; 2010 Nov; 49(48):9254-7. PubMed ID: 20979074
    [No Abstract]   [Full Text] [Related]  

  • 5. Entropy-controlled catalytic asymmetric 1,4-type Friedel-Crafts reaction of phenols using conformationally flexible guanidine/bisthiourea organocatalyst.
    Sohtome Y; Shin B; Horitsugi N; Takagi R; Noguchi K; Nagasawa K
    Angew Chem Int Ed Engl; 2010 Sep; 49(40):7299-303. PubMed ID: 20814999
    [No Abstract]   [Full Text] [Related]  

  • 6. Organocatalytic asymmetric nitroaldol reaction: cooperative effects of guanidine and thiourea functional groups.
    Sohtome Y; Takemura N; Takada K; Takagi R; Iguchi T; Nagasawa K
    Chem Asian J; 2007 Sep; 2(9):1150-60. PubMed ID: 17638377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic enantiodivergent organocatalysis: merging molecular motors with bifunctional organocatalysts.
    Sohtome Y; Nagasawa K
    Chemphyschem; 2011 Aug; 12(12):2217-9. PubMed ID: 21630413
    [No Abstract]   [Full Text] [Related]  

  • 8. Recent advances in cooperative ion pairing in asymmetric organocatalysis.
    Brière JF; Oudeyer S; Dalla V; Levacher V
    Chem Soc Rev; 2012 Mar; 41(5):1696-707. PubMed ID: 22045014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Dynamic Kinetic Resolution by Chiral Bifunctional (Thio)urea- and Squaramide-Based Organocatalysts.
    Li P; Hu X; Dong XQ; Zhang X
    Molecules; 2016 Oct; 21(10):. PubMed ID: 27754440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in asymmetric organocatalysis mediated by bifunctional amine-thioureas bearing multiple hydrogen-bonding donors.
    Fang X; Wang CJ
    Chem Commun (Camb); 2015 Jan; 51(7):1185-97. PubMed ID: 25364797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperative thiourea-Brønsted acid organocatalysis: enantioselective cyanosilylation of aldehydes with TMSCN.
    Zhang Z; Lippert KM; Hausmann H; Kotke M; Schreiner PR
    J Org Chem; 2011 Dec; 76(23):9764-76. PubMed ID: 22011108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chiral amine-thioureas bearing multiple hydrogen bonding donors: highly efficient organocatalysts for asymmetric Michael addition of acetylacetone to nitroolefins.
    Wang CJ; Zhang ZH; Dong XQ; Wu XJ
    Chem Commun (Camb); 2008 Mar; (12):1431-3. PubMed ID: 18338046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic control over catalytic function using responsive bisthiourea catalysts.
    Vlatković M; Volarić J; Collins BSL; Bernardi L; Feringa BL
    Org Biomol Chem; 2017 Oct; 15(39):8285-8294. PubMed ID: 28858354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organocatalysis mediated by (thio)urea derivatives.
    Connon SJ
    Chemistry; 2006 Jul; 12(21):5418-27. PubMed ID: 16514689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Squaramides: bridging from molecular recognition to bifunctional organocatalysis.
    Alemán J; Parra A; Jiang H; Jørgensen KA
    Chemistry; 2011 Jun; 17(25):6890-9. PubMed ID: 21590822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active conformation in amine-thiourea bifunctional organocatalysis preformed by catalyst aggregation.
    Tárkányi G; Király P; Soós T; Varga S
    Chemistry; 2012 Feb; 18(7):1918-22. PubMed ID: 22262570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical studies on the bifunctionality of chiral thiourea-based organocatalysts: competing routes to C-C bond formation.
    Hamza A; Schubert G; Soós T; Papai I
    J Am Chem Soc; 2006 Oct; 128(40):13151-60. PubMed ID: 17017795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (Thio)urea organocatalysis--what can be learnt from anion recognition?
    Zhang Z; Schreiner PR
    Chem Soc Rev; 2009 Apr; 38(4):1187-98. PubMed ID: 19421588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Urea-, thiourea-, and guanidine-linked glycooligomers as phosphate binders in water.
    Jiménez Blanco JL; Bootello P; Benito JM; Mellet CO; García Fernandez JM
    J Org Chem; 2006 Jul; 71(14):5136-43. PubMed ID: 16808499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and Theoretical Studies in Hydrogen-Bonding Organocatalysis.
    Žabka M; Šebesta R
    Molecules; 2015 Aug; 20(9):15500-24. PubMed ID: 26343615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.