These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22738611)

  • 21. Promises and pitfalls of recent advances in chemical means of preventing the spread of nosocomial infections by environmental surfaces.
    Sattar SA
    Am J Infect Control; 2010 Jun; 38(5 Suppl 1):S34-40. PubMed ID: 20569854
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of copper-impregnated linens on multidrug-resistant organism acquisition and Clostridium difficile infection at a long-term acute-care hospital.
    Madden GR; Heon BE; Sifri CD
    Infect Control Hosp Epidemiol; 2018 Nov; 39(11):1384-1386. PubMed ID: 30231949
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficacy of "sporicidal" wipes against Clostridium difficile.
    Siani H; Cooper C; Maillard JY
    Am J Infect Control; 2011 Apr; 39(3):212-8. PubMed ID: 21458683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potent bactericidal efficacy of copper oxide impregnated non-porous solid surfaces.
    Monk AB; Kanmukhla V; Trinder K; Borkow G
    BMC Microbiol; 2014 Mar; 14():57. PubMed ID: 24606672
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Environmental contamination and airborne microbial counts: a role for hydroxyl radical disinfection units?
    Wong V; Staniforth K; Boswell TC
    J Hosp Infect; 2011 Jul; 78(3):194-9. PubMed ID: 21497944
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A model system for evaluating surface disinfection in dairy factory environments.
    Knight GC; Craven HM
    Int J Food Microbiol; 2010 Feb; 137(2-3):161-7. PubMed ID: 20022125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing the efficacy of different microfibre cloths at removing surface micro-organisms associated with healthcare-associated infections.
    Smith DL; Gillanders S; Holah JT; Gush C
    J Hosp Infect; 2011 Jul; 78(3):182-6. PubMed ID: 21501897
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From Laboratory Research to a Clinical Trial: Copper Alloy Surfaces Kill Bacteria and Reduce Hospital-Acquired Infections.
    Michels HT; Keevil CW; Salgado CD; Schmidt MG
    HERD; 2015; 9(1):64-79. PubMed ID: 26163568
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental surface infection control, 2003.
    Molinari JA; Palenik CJ
    Compend Contin Educ Dent; 2004 Jan; 25(1 Suppl):30, 32-34, 36-37. PubMed ID: 15641332
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of cleaning efficacy between in-use disinfectant and electrolysed water in an English residential care home.
    Meakin NS; Bowman C; Lewis MR; Dancer SJ
    J Hosp Infect; 2012 Feb; 80(2):122-7. PubMed ID: 22196853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Specific antibacterial activity of copper alloy touch surfaces in five long-term care facilities for older adults.
    Colin M; Charpentier E; Klingelschmitt F; Bontemps C; De Champs C; Reffuveille F; Gangloff SC
    J Hosp Infect; 2020 Mar; 104(3):283-292. PubMed ID: 31809775
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance of ultramicrofibre cleaning technology with or without addition of a novel copper-based biocide.
    Hamilton D; Foster A; Ballantyne L; Kingsmore P; Bedwell D; Hall TJ; Hickok SS; Jeanes A; Coen PG; Gant VA
    J Hosp Infect; 2010 Jan; 74(1):62-71. PubMed ID: 19819583
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Copper alloy surfaces sustain terminal cleaning levels in a rural hospital.
    Hinsa-Leasure SM; Nartey Q; Vaverka J; Schmidt MG
    Am J Infect Control; 2016 Nov; 44(11):e195-e203. PubMed ID: 27692787
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Copper surfaces are associated with significantly lower concentrations of bacteria on selected surfaces within a pediatric intensive care unit.
    Schmidt MG; von Dessauer B; Benavente C; Benadof D; Cifuentes P; Elgueta A; Duran C; Navarrete MS
    Am J Infect Control; 2016 Feb; 44(2):203-9. PubMed ID: 26553403
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of hospital surfaces in the transmission of emerging health care-associated pathogens: norovirus, Clostridium difficile, and Acinetobacter species.
    Weber DJ; Rutala WA; Miller MB; Huslage K; Sickbert-Bennett E
    Am J Infect Control; 2010 Jun; 38(5 Suppl 1):S25-33. PubMed ID: 20569853
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Disinfection efficacy against parvoviruses compared with reference viruses.
    Eterpi M; McDonnell G; Thomas V
    J Hosp Infect; 2009 Sep; 73(1):64-70. PubMed ID: 19646784
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro evaluation of a novel process for reducing bacterial contamination of environmental surfaces.
    Baxa D; Shetron-Rama L; Golembieski M; Golembieski M; Jain S; Gordon M; Zervos M
    Am J Infect Control; 2011 Aug; 39(6):483-7. PubMed ID: 21616563
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 405 nm light technology for the inactivation of pathogens and its potential role for environmental disinfection and infection control.
    Maclean M; McKenzie K; Anderson JG; Gettinby G; MacGregor SJ
    J Hosp Infect; 2014 Sep; 88(1):1-11. PubMed ID: 25066049
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gaseous and air decontamination technologies for Clostridium difficile in the healthcare environment.
    Davies A; Pottage T; Bennett A; Walker J
    J Hosp Infect; 2011 Mar; 77(3):199-203. PubMed ID: 21130521
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Designing a protocol that eliminates Clostridium difficile: a collaborative venture.
    Whitaker J; Brown BS; Vidal S; Calcaterra M
    Am J Infect Control; 2007 Jun; 35(5):310-4. PubMed ID: 17577477
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.