These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2273868)

  • 21. Poroelastic numerical modelling of natural and engineered cartilage based on in vitro tests.
    Boschetti F; Gervaso F; Pennati G; Peretti GM; Vena P; Dubini G
    Biorheology; 2006; 43(3,4):235-47. PubMed ID: 16912397
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The combined impact of tissue heterogeneity and fixed charge for models of cartilage: the one-dimensional biphasic swelling model revisited.
    Klika V; Whiteley JP; Brown CP; Gaffney EA
    Biomech Model Mechanobiol; 2019 Aug; 18(4):953-968. PubMed ID: 30729390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The asymmetry of transient response in compression versus release for cartilage in unconfined compression.
    Li LP; Buschmann MD; Shirazi-Adl A
    J Biomech Eng; 2001 Oct; 123(5):519-22. PubMed ID: 11601739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contribution of tissue composition and structure to mechanical response of articular cartilage under different loading geometries and strain rates.
    Julkunen P; Jurvelin JS; Isaksson H
    Biomech Model Mechanobiol; 2010 Apr; 9(2):237-45. PubMed ID: 19680701
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Investigation of mechanical behavior of articular cartilage by fibril reinforced poroelastic models.
    Li L; Shirazi-Adl A; Buschmann MD
    Biorheology; 2003; 40(1-3):227-33. PubMed ID: 12454409
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The apparent viscoelastic behavior of articular cartilage--the contributions from the intrinsic matrix viscoelasticity and interstitial fluid flows.
    Mak AF
    J Biomech Eng; 1986 May; 108(2):123-30. PubMed ID: 3724099
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biomechanical characterization and in vitro mechanical injury of elderly human femoral head cartilage: comparison to adult bovine humeral head cartilage.
    Démarteau O; Pillet L; Inaebnit A; Borens O; Quinn TM
    Osteoarthritis Cartilage; 2006 Jun; 14(6):589-96. PubMed ID: 16478669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical properties of normal and osteoarthritic human articular cartilage.
    Robinson DL; Kersh ME; Walsh NC; Ackland DC; de Steiger RN; Pandy MG
    J Mech Behav Biomed Mater; 2016 Aug; 61():96-109. PubMed ID: 26851527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Shear deformations of human articular cartilage: Certain mechanical anisotropies apparent at large but not small shear strains.
    Maier F; Drissi H; Pierce DM
    J Mech Behav Biomed Mater; 2017 Jan; 65():53-65. PubMed ID: 27552599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A microstructurally based continuum model of cartilage viscoelasticity and permeability incorporating measured statistical fiber orientations.
    Pierce DM; Unterberger MJ; Trobin W; Ricken T; Holzapfel GA
    Biomech Model Mechanobiol; 2016 Feb; 15(1):229-44. PubMed ID: 26001349
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The mechanical behaviour of chondrocytes predicted with a micro-structural model of articular cartilage.
    Han SK; Federico S; Grillo A; Giaquinta G; Herzog W
    Biomech Model Mechanobiol; 2007 Apr; 6(3):139-50. PubMed ID: 16506020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly nonlinear stress-relaxation response of articular cartilage in indentation: Importance of collagen nonlinearity.
    Mäkelä JTA; Korhonen RK
    J Biomech; 2016 Jun; 49(9):1734-1741. PubMed ID: 27130474
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microstructural modeling of collagen network mechanics and interactions with the proteoglycan gel in articular cartilage.
    Quinn TM; Morel V
    Biomech Model Mechanobiol; 2007 Jan; 6(1-2):73-82. PubMed ID: 16715320
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The functional environment of chondrocytes within cartilage subjected to compressive loading: a theoretical and experimental approach.
    Wang CC; Guo XE; Sun D; Mow VC; Ateshian GA; Hung CT
    Biorheology; 2002; 39(1-2):11-25. PubMed ID: 12082263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Further insight into the depth-dependent microstructural response of cartilage to compression using a channel indentation technique.
    Thambyah A; Broom ND
    Comput Math Methods Med; 2013; 2013():358192. PubMed ID: 24023589
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How changes in interconnectivity affect the bulk properties of articular cartilage: a fibre network study.
    Bilton MA; Thambyah A; Clarke RJ
    Biomech Model Mechanobiol; 2018 Oct; 17(5):1297-1315. PubMed ID: 29777321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Relative contribution of articular cartilage's constitutive components to load support depending on strain rate.
    Quiroga JMP; Wilson W; Ito K; van Donkelaar CC
    Biomech Model Mechanobiol; 2017 Feb; 16(1):151-158. PubMed ID: 27416853
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of structural distortions on articular cartilage permeability under large deformations.
    Maleki M; Hashlamoun K; Herzog W; Federico S
    Biomech Model Mechanobiol; 2020 Feb; 19(1):317-334. PubMed ID: 31506863
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of fibril reinforcement in the mechanical behavior of cartilage.
    Li L; Buschmann MD; Shirazi-Adl A
    Biorheology; 2002; 39(1-2):89-96. PubMed ID: 12082271
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A finite element analysis of the indentation stress-relaxation response of linear biphasic articular cartilage.
    Spilker RL; Suh JK; Mow VC
    J Biomech Eng; 1992 May; 114(2):191-201. PubMed ID: 1602762
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.