These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 22738811)
1. Bacterial populations within copper mine tailings: long-term effects of amendment with Class A biosolids. Pepper IL; Zerzghi HG; Bengson SA; Iker BC; Banerjee MJ; Brooks JP J Appl Microbiol; 2012 Sep; 113(3):569-77. PubMed ID: 22738811 [TBL] [Abstract][Full Text] [Related]
2. Accelerated weathering of biosolid-amended copper mine tailings. Pond AP; White SA; Milczarek M; Thompson TL J Environ Qual; 2005; 34(4):1293-301. PubMed ID: 15998851 [TBL] [Abstract][Full Text] [Related]
3. Influence of long-term land application of Class B biosolids on soil bacterial diversity. Zerzghi H; Brooks JP; Gerba CP; Pepper IL J Appl Microbiol; 2010 Aug; 109(2):698-706. PubMed ID: 20202022 [TBL] [Abstract][Full Text] [Related]
4. A greenhouse trial to investigate the ameliorative properties of biosolids and plants on physicochemical conditions of iron ore tailings: Implications for an iron ore mine site remediation. Cele EN; Maboeta M J Environ Manage; 2016 Jan; 165():167-174. PubMed ID: 26433357 [TBL] [Abstract][Full Text] [Related]
5. Long-term effects of land application of class B biosolids on the soil microbial populations, pathogens, and activity. Zerzghi H; Gerba CP; Brooks JP; Pepper IL J Environ Qual; 2010; 39(1):402-8. PubMed ID: 20048328 [TBL] [Abstract][Full Text] [Related]
6. Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings. Touceda-González M; Álvarez-López V; Prieto-Fernández Á; Rodríguez-Garrido B; Trasar-Cepeda C; Mench M; Puschenreiter M; Quintela-Sabarís C; Macías-García F; Kidd PS J Environ Manage; 2017 Jan; 186(Pt 2):301-313. PubMed ID: 27817970 [TBL] [Abstract][Full Text] [Related]
7. Soil-covered strategy for ecological restoration alters the bacterial community structure and predictive energy metabolic functions in mine tailings profiles. Li Y; Sun Q; Zhan J; Yang Y; Wang D Appl Microbiol Biotechnol; 2017 Mar; 101(6):2549-2561. PubMed ID: 27878335 [TBL] [Abstract][Full Text] [Related]
8. Soil management of copper mine tailing soils--sludge amendment and tree vegetation could improve biological soil quality. Asensio V; Covelo EF; Kandeler E Sci Total Environ; 2013 Jul; 456-457():82-90. PubMed ID: 23584036 [TBL] [Abstract][Full Text] [Related]
9. Restoration with pioneer plants changes soil properties and remodels the diversity and structure of bacterial communities in rhizosphere and bulk soil of copper mine tailings in Jiangxi Province, China. Sun X; Zhou Y; Tan Y; Wu Z; Lu P; Zhang G; Yu F Environ Sci Pollut Res Int; 2018 Aug; 25(22):22106-22119. PubMed ID: 29802615 [TBL] [Abstract][Full Text] [Related]
10. Biodiversity, abundance, and activity of nitrogen-fixing bacteria during primary succession on a copper mine tailings. Huang LN; Tang FZ; Song YS; Wan CY; Wang SL; Liu WQ; Shu WS FEMS Microbiol Ecol; 2011 Dec; 78(3):439-50. PubMed ID: 22066852 [TBL] [Abstract][Full Text] [Related]
11. [Spatiotemporal dynamics and driving forces of soil bacterial communities on the dam of Shibahe copper mine tailings in Shanxi, China.]. Li C; Jing JH; Liu JX; Chai BF Ying Yong Sheng Tai Xue Bao; 2018 Jun; 29(6):1975-1982. PubMed ID: 29974708 [TBL] [Abstract][Full Text] [Related]
12. Amendment-assisted revegetation of mine tailings: improvement of tailings quality and biomass production. Al-Lami MK; Oustriere N; Gonzales E; Burken JG Int J Phytoremediation; 2019; 21(5):425-434. PubMed ID: 30648418 [TBL] [Abstract][Full Text] [Related]
13. Legacy copper/nickel mine tailings potentially harbor novel iron/sulfur cycling microorganisms within highly variable communities. Chen M; Grégoire DS; Bain JG; Blowes DW; Hug LA Appl Environ Microbiol; 2024 Jun; 90(6):e0014324. PubMed ID: 38814057 [TBL] [Abstract][Full Text] [Related]
15. Ecological restoration alters microbial communities in mine tailings profiles. Li Y; Jia Z; Sun Q; Zhan J; Yang Y; Wang D Sci Rep; 2016 Apr; 6():25193. PubMed ID: 27126064 [TBL] [Abstract][Full Text] [Related]
16. Microbial diversity in uranium mining-impacted soils as revealed by high-density 16S microarray and clone library. Rastogi G; Osman S; Vaishampayan PA; Andersen GL; Stetler LD; Sani RK Microb Ecol; 2010 Jan; 59(1):94-108. PubMed ID: 19888627 [TBL] [Abstract][Full Text] [Related]
17. Microbial studies of a selenium-contaminated mine site and potential for on-site remediation. Knotek-Smith HM; Crawford DL; Möller G; Henson RA J Ind Microbiol Biotechnol; 2006 Nov; 33(11):897-913. PubMed ID: 16804682 [TBL] [Abstract][Full Text] [Related]
18. Performance of a Geosynthetic-Clay-Liner Cover System at a Cu/Zn Mine Tailings Impoundment. Pakostova E; Schmall AJ; Holland SP; White H; Ptacek CJ; Blowes DW Appl Environ Microbiol; 2020 Apr; 86(8):. PubMed ID: 32033946 [TBL] [Abstract][Full Text] [Related]
19. Environmental factors influencing the structural dynamics of soil microbial communities during assisted phytostabilization of acid-generating mine tailings: a mesocosm experiment. Valentín-Vargas A; Root RA; Neilson JW; Chorover J; Maier RM Sci Total Environ; 2014 Dec; 500-501():314-24. PubMed ID: 25237788 [TBL] [Abstract][Full Text] [Related]
20. Phytostabilization of mine tailings using compost-assisted direct planting: Translating greenhouse results to the field. Gil-Loaiza J; White SA; Root RA; Solís-Dominguez FA; Hammond CM; Chorover J; Maier RM Sci Total Environ; 2016 Sep; 565():451-461. PubMed ID: 27183459 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]