BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 22739036)

  • 1. Surface tension of an electrolyte-air interface: a Monte Carlo study.
    Diehl A; dos Santos AP; Levin Y
    J Phys Condens Matter; 2012 Jul; 24(28):284115. PubMed ID: 22739036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulations of Lennard-Jones nonionic surfactant adsorption at the liquid/vapor interface.
    Howes AJ; Radke CJ
    Langmuir; 2007 Feb; 23(4):1835-44. PubMed ID: 17279664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface tension increment due to solute addition.
    Hsin WL; Sheng YJ; Lin SY; Tsao HK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 1):031605. PubMed ID: 15089302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface tension of associating fluids by Monte Carlo simulations.
    Tapia-Medina C; Orea P; Mier-Y-Teran L; Alejandre J
    J Chem Phys; 2004 Feb; 120(5):2337-42. PubMed ID: 15268372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of proton adsorption at heterogeneous oxide/electrolyte interface. Prediction of the surface potential using Monte Carlo simulations and 1-pK approach.
    Zarzycki P; Charmas R; Szabelski P
    J Comput Chem; 2004 Apr; 25(5):704-11. PubMed ID: 14978713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excess charge density and its relationship with surface tension increment at the air-electrolyte solution interface.
    Song J; Kim MW
    J Phys Chem B; 2011 Mar; 115(8):1856-62. PubMed ID: 21291223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular solvent model of spherical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Phys Chem B; 2009 Oct; 113(42):13980-7. PubMed ID: 19778069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Second harmonic generation study of malachite green adsorption at the interface between air and an electrolyte solution: observing the effect of excess electrical charge density at the interface.
    Song J; Kim MW
    J Phys Chem B; 2010 Mar; 114(9):3236-41. PubMed ID: 20158228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple histogram reweighting method for the surface tension calculation.
    Ghoufi A; Goujon F; Lachet V; Malfreyt P
    J Chem Phys; 2008 Apr; 128(15):154718. PubMed ID: 18433269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of cetyltrimethylammonium bromide and propanol mixtures with regard to wettability of polytetrafluoroethylene. I. Adsorption at aqueous solution-air interface.
    Zdziennicka A; Jańczuk B
    J Colloid Interface Sci; 2008 Jan; 317(1):44-53. PubMed ID: 17931646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of the temperature dependence of the surface tension of SO2, N2, O2, and Ar by Monte Carlo molecular simulations.
    Neyt JC; Wender A; Lachet V; Malfreyt P
    J Phys Chem B; 2011 Aug; 115(30):9421-30. PubMed ID: 21711018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulation methodology of the ghost interface theory for the planar surface tension.
    Moody MP; Attard P
    J Chem Phys; 2004 Jan; 120(4):1892-904. PubMed ID: 15268323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric double layers with electrolyte mixtures: integral equations theories and simulations.
    Martín-Molina A; Quesada-Pérez M; Hidalgo-Alvarez R
    J Phys Chem B; 2006 Jan; 110(3):1326-31. PubMed ID: 16471681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous application of the gradient theory and Monte Carlo molecular simulation for the investigation of methane/water interfacial properties.
    Miqueu C; Míguez JM; Piñeiro MM; Lafitte T; Mendiboure B
    J Phys Chem B; 2011 Aug; 115(31):9618-25. PubMed ID: 21718009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo versus molecular dynamics simulations in heterogeneous systems: an application to the n-pentane liquid-vapor interface.
    Goujon F; Malfreyt P; Simon JM; Boutin A; Rousseau B; Fuchs AH
    J Chem Phys; 2004 Dec; 121(24):12559-71. PubMed ID: 15606277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of surface active soluble peptide molecules at the air/water interface.
    Gu C; Lustig S; Jackson C; Trout BL
    J Phys Chem B; 2008 Mar; 112(10):2970-80. PubMed ID: 18271570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular solvent model of cylindrical electric double layers: a systematic study by Monte Carlo simulations and density functional theory.
    Goel T; Patra CN; Ghosh SK; Mukherjee T
    J Chem Phys; 2008 Oct; 129(15):154707. PubMed ID: 19045218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density-functional theory of spherical electric double layers and zeta potentials of colloidal particles in restricted-primitive-model electrolyte solutions.
    Yu YX; Wu J; Gao GH
    J Chem Phys; 2004 Apr; 120(15):7223-33. PubMed ID: 15267630
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of spherical electric double layers containing mixed electrolytes: a systematic study by Monte Carlo simulations and density functional theory.
    Patra CN
    J Phys Chem B; 2010 Aug; 114(32):10550-7. PubMed ID: 20701385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface tension of water-alcohol mixtures from Monte Carlo simulations.
    Biscay F; Ghoufi A; Malfreyt P
    J Chem Phys; 2011 Jan; 134(4):044709. PubMed ID: 21280787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.