These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 22739314)
1. Magnetic tornadoes as energy channels into the solar corona. Wedemeyer-Böhm S; Scullion E; Steiner O; van der Voort LR; de la Cruz Rodriguez J; Fedun V; Erdélyi R Nature; 2012 Jun; 486(7404):505-8. PubMed ID: 22739314 [TBL] [Abstract][Full Text] [Related]
2. Evidence of ubiquitous Alfvén pulses transporting energy from the photosphere to the upper chromosphere. Liu J; Nelson CJ; Snow B; Wang Y; Erdélyi R Nat Commun; 2019 Aug; 10(1):3504. PubMed ID: 31383869 [TBL] [Abstract][Full Text] [Related]
3. Small-scale dynamo magnetism as the driver for heating the solar atmosphere. Amari T; Luciani JF; Aly JJ Nature; 2015 Jun; 522(7555):188-91. PubMed ID: 26062509 [TBL] [Abstract][Full Text] [Related]
4. Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind. McIntosh SW; De Pontieu B; Carlsson M; Hansteen V; Boerner P; Goossens M Nature; 2011 Jul; 475(7357):477-80. PubMed ID: 21796206 [TBL] [Abstract][Full Text] [Related]
5. Solar chromospheric spicules from the leakage of photospheric oscillations and flows. De Pontieu B; Erdélyi R; James SP Nature; 2004 Jul; 430(6999):536-9. PubMed ID: 15282598 [TBL] [Abstract][Full Text] [Related]
6. The role of partial ionization effects in the chromosphere. Martínez-Sykora J; De Pontieu B; Hansteen V; Carlsson M Philos Trans A Math Phys Eng Sci; 2015 May; 373(2042):. PubMed ID: 25897096 [TBL] [Abstract][Full Text] [Related]
7. Chromospheric alfvenic waves strong enough to power the solar wind. De Pontieu B; McIntosh SW; Carlsson M; Hansteen VH; Tarbell TD; Schrijver CJ; Title AM; Shine RA; Tsuneta S; Katsukawa Y; Ichimoto K; Suematsu Y; Shimizu T; Nagata S Science; 2007 Dec; 318(5856):1574-7. PubMed ID: 18063784 [TBL] [Abstract][Full Text] [Related]
8. A substantial amount of hidden magnetic energy in the quiet Sun. Bueno JT; Shchukina N; Ramos AA Nature; 2004 Jul; 430(6997):326-9. PubMed ID: 15254531 [TBL] [Abstract][Full Text] [Related]
9. Observations of ubiquitous compressive waves in the Sun's chromosphere. Morton RJ; Verth G; Jess DB; Kuridze D; Ruderman MS; Mathioudakis M; Erdélyi R Nat Commun; 2012; 3():1315. PubMed ID: 23271649 [TBL] [Abstract][Full Text] [Related]
10. Mapping solar magnetic fields from the photosphere to the base of the corona. Ishikawa R; Bueno JT; Del Pino Alemán T; Okamoto TJ; McKenzie DE; Auchère F; Kano R; Song D; Yoshida M; Rachmeler LA; Kobayashi K; Hara H; Kubo M; Narukage N; Sakao T; Shimizu T; Suematsu Y; Bethge C; De Pontieu B; Dalda AS; Vigil GD; Winebarger A; Ballester EA; Belluzzi L; Štěpán J; Ramos AA; Carlsson M; Leenaarts J Sci Adv; 2021 Feb; 7(8):. PubMed ID: 33608278 [TBL] [Abstract][Full Text] [Related]
11. High-frequency torsional Alfvén waves as an energy source for coronal heating. Srivastava AK; Shetye J; Murawski K; Doyle JG; Stangalini M; Scullion E; Ray T; Wójcik DP; Dwivedi BN Sci Rep; 2017 Mar; 7():43147. PubMed ID: 28256538 [TBL] [Abstract][Full Text] [Related]
12. What can large-scale magnetohydrodynamic numerical experiments tell us about coronal heating? Peter H Philos Trans A Math Phys Eng Sci; 2015 May; 373(2042):. PubMed ID: 25897097 [TBL] [Abstract][Full Text] [Related]
13. The origins of hot plasma in the solar corona. De Pontieu B; McIntosh SW; Carlsson M; Hansteen VH; Tarbell TD; Boerner P; Martinez-Sykora J; Schrijver CJ; Title AM Science; 2011 Jan; 331(6013):55-8. PubMed ID: 21212351 [TBL] [Abstract][Full Text] [Related]
14. Energy release in the solar corona from spatially resolved magnetic braids. Cirtain JW; Golub L; Winebarger AR; De Pontieu B; Kobayashi K; Moore RL; Walsh RW; Korreck KE; Weber M; McCauley P; Title A; Kuzin S; DeForest CE Nature; 2013 Jan; 493(7433):501-3. PubMed ID: 23344359 [TBL] [Abstract][Full Text] [Related]
15. The role and contribution of magnetic fields, characterized via their magnetic flux, to the statistical structuring of the solar atmosphere. Li KJ; Xu JC; Feng W Sci Rep; 2022 Sep; 12(1):15877. PubMed ID: 36151138 [TBL] [Abstract][Full Text] [Related]
16. Solar Coronal Jets: Observations, Theory, and Modeling. Raouafi NE; Patsourakos S; Pariat E; Young PR; Sterling A; Savcheva A; Shimojo M; Moreno-Insertis F; DeVore CR; Archontis V; Török T; Mason H; Curdt W; Meyer K; Dalmasse K; Matsui Y Space Sci Rev; 2016 Jul; 201():1-53. PubMed ID: 32908324 [TBL] [Abstract][Full Text] [Related]
17. Nonlinear waves in the solar atmosphere. Ruderman MS Philos Trans A Math Phys Eng Sci; 2006 Feb; 364(1839):485-504. PubMed ID: 16414893 [TBL] [Abstract][Full Text] [Related]
18. Structure of the solar photosphere studied from the radiation hydrodynamics code ANTARES. Leitner P; Lemmerer B; Hanslmeier A; Zaqarashvili T; Veronig A; Grimm-Strele H; Muthsam HJ Astrophys Space Sci; 2017; 362(9):181. PubMed ID: 28931954 [TBL] [Abstract][Full Text] [Related]
19. Hot explosions in the cool atmosphere of the Sun. Peter H; Tian H; Curdt W; Schmit D; Innes D; De Pontieu B; Lemen J; Title A; Boerner P; Hurlburt N; Tarbell TD; Wuelser JP; Martínez-Sykora J; Kleint L; Golub L; McKillop S; Reeves KK; Saar S; Testa P; Kankelborg C; Jaeggli S; Carlsson M; Hansteen V Science; 2014 Oct; 346(6207):1255726. PubMed ID: 25324397 [TBL] [Abstract][Full Text] [Related]
20. Magnetoacoustic cutoff effect in numerical simulations of the partially ionized solar atmosphere. Kuźma B; Kadowaki LHS; Murawski K; Musielak ZE; Poedts S; Yuan D; Feng X Philos Trans A Math Phys Eng Sci; 2024 Jun; 382(2272):20230218. PubMed ID: 38679054 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]