These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 22739704)
1. A comparative study on the sensitive detection of hydroxyl radical using thiol-capped CdTe and CdTe/ZnS quantum dots. Adegoke O; Nyokong T J Fluoresc; 2012 Nov; 22(6):1513-9. PubMed ID: 22739704 [TBL] [Abstract][Full Text] [Related]
2. Fluorescent probe for detection of Cu2+ using core-shell CdTe/ZnS quantum dots. Bian W; Wang F; Zhang H; Zhang L; Wang L; Shuang S Luminescence; 2015 Nov; 30(7):1064-70. PubMed ID: 25703392 [TBL] [Abstract][Full Text] [Related]
3. In situ synthesis of highly luminescent glutathione-capped CdTe/ZnS quantum dots with biocompatibility. Liu YF; Yu JS J Colloid Interface Sci; 2010 Nov; 351(1):1-9. PubMed ID: 20719328 [TBL] [Abstract][Full Text] [Related]
4. Ultraviolet radiation synthesis of water dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with high fluorescence strength and biocompatibility. Xu B; Cai B; Liu M; Fan H Nanotechnology; 2013 May; 24(20):205601. PubMed ID: 23598608 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of highly luminescent and biocompatible CdTe/CdS/ZnS quantum dots using microwave irradiation: a comparative study of different ligands. He H; Sun X; Wang X; Xu H Luminescence; 2014 Nov; 29(7):837-45. PubMed ID: 24436082 [TBL] [Abstract][Full Text] [Related]
6. Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots. Zhang W; Chen G; Wang J; Ye BC; Zhong X Inorg Chem; 2009 Oct; 48(20):9723-31. PubMed ID: 19772326 [TBL] [Abstract][Full Text] [Related]
7. Aqueous synthesis of CdTe/CdS/ZnS quantum dots and their optical and chemical properties. Li Z; Dong C; Tang L; Zhu X; Chen H; Ren J Luminescence; 2011; 26(6):439-48. PubMed ID: 20878652 [TBL] [Abstract][Full Text] [Related]
8. A selective determination of copper ions in water samples based on the fluorescence quenching of thiol-capped CdTe quantum dots. Nurerk P; Kanatharana P; Bunkoed O Luminescence; 2016 Mar; 31(2):515-522. PubMed ID: 26250550 [TBL] [Abstract][Full Text] [Related]
15. Effect of mercaptocarboxylic acids on luminescent properties of CdTe quantum dots. Yuan Z; Zhang A; Cao Y; Yang J; Zhu Y; Yang P J Fluoresc; 2012 Jan; 22(1):121-7. PubMed ID: 21850430 [TBL] [Abstract][Full Text] [Related]
16. Photodegradation of Mercaptopropionic Acid- and Thioglycollic Acid-Capped CdTe Quantum Dots in Buffer Solutions. Miao Y; Yang P; Zhao J; Du Y; He H; Liu Y J Nanosci Nanotechnol; 2015 Jun; 15(6):4462-9. PubMed ID: 26369066 [TBL] [Abstract][Full Text] [Related]
17. Improvement of fluorescence properties by surface modification of CdS-ZnS quantum dots by thiol compounds and its application as a sensitive fluorescence probe for copper ion detection. Ghasemi S; Samadi-Maybodi A Luminescence; 2024 Sep; 39(9):e4874. PubMed ID: 39252570 [TBL] [Abstract][Full Text] [Related]
18. Photoenhancement of lifetimes in CdSe/ZnS and CdTe quantum dot-dopamine conjugates. Cooper DR; Suffern D; Carlini L; Clarke SJ; Parbhoo R; Bradforth SE; Nadeau JL Phys Chem Chem Phys; 2009 Jun; 11(21):4298-310. PubMed ID: 19458832 [TBL] [Abstract][Full Text] [Related]
20. Molecular spectroscopic studies on the interactions of rhein and emodin with thioglycolic acid-capped core/shell CdTe/CdS quantum dots and their analytical applications. Li D; Liu S; Shen Y; Yang J; He Y Luminescence; 2015 Feb; 30(1):60-6. PubMed ID: 24850622 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]