These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 22739813)
21. Single-walled carbon nanotubes of controlled diameter and bundle size and their field emission properties. Zhang L; Balzano L; Resasco DE J Phys Chem B; 2005 Aug; 109(30):14375-81. PubMed ID: 16852808 [TBL] [Abstract][Full Text] [Related]
22. Nanotubes oxidation temperature controls the height of single-walled carbon nanotube forests on gold micropatterned thin layers. Lamberti F; Agnoli S; Meneghetti M; Elvassore N Langmuir; 2010 Jul; 26(13):11344-8. PubMed ID: 20476726 [TBL] [Abstract][Full Text] [Related]
23. Effect of bovine serum albumin and single walled carbon nanotube on the photophysical properties of zinc octacarboxy phthalocyanine. Ogbodu RO; Nyokong T Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():81-7. PubMed ID: 24231742 [TBL] [Abstract][Full Text] [Related]
24. Single-walled carbon-nanotube dispersion with electrostatically tethered nanoplatelets. Sun D; Everett WN; Chu CC; Sue HJ Small; 2009 Dec; 5(23):2692-7. PubMed ID: 19771566 [No Abstract] [Full Text] [Related]
25. Aqueous dispersion, surface thiolation, and direct self-assembly of carbon nanotubes on gold. Kocharova N; Aäritalo T; Leiro J; Kankare J; Lukkari J Langmuir; 2007 Mar; 23(6):3363-71. PubMed ID: 17291020 [TBL] [Abstract][Full Text] [Related]
26. Modifying the electronic properties of single-walled carbon nanotubes using designed surfactant peptides. Samarajeewa DR; Dieckmann GR; Nielsen SO; Musselman IH Nanoscale; 2012 Aug; 4(15):4544-54. PubMed ID: 22699559 [TBL] [Abstract][Full Text] [Related]
27. Covalent attachment and hybridization of DNA oligonucleotides on patterned single-walled carbon nanotube films. Jung DH; Kim BH; Ko YK; Jung MS; Jung S; Lee SY; Jung HT Langmuir; 2004 Sep; 20(20):8886-91. PubMed ID: 15379522 [TBL] [Abstract][Full Text] [Related]
28. Comparative dispersion studies of single-walled carbon nanotubes in aqueous solution. Koh B; Park JB; Hou X; Cheng W J Phys Chem B; 2011 Mar; 115(11):2627-33. PubMed ID: 21355620 [TBL] [Abstract][Full Text] [Related]
29. Direct attachment of well-aligned single-walled carbon nanotube architectures to silicon (100) surfaces: a simple approach for device assembly. Yu J; Shapter JG; Quinton JS; Johnston MR; Beattie DA Phys Chem Chem Phys; 2007 Jan; 9(4):510-20. PubMed ID: 17216067 [TBL] [Abstract][Full Text] [Related]
30. Synthesis and evaluation of single-wall carbon nanotube-paclitaxel-folic acid conjugate as an anti-cancer targeting agent. Tavakolifard S; Biazar E; Pourshamsian K; Moslemin MH Artif Cells Nanomed Biotechnol; 2016 Aug; 44(5):1247-53. PubMed ID: 25783856 [TBL] [Abstract][Full Text] [Related]
31. Decoration of gold nanoparticles on surface-grown single-walled carbon nanotubes for detection of every nanotube by surface-enhanced Raman spectroscopy. Chu H; Wang J; Ding L; Yuan D; Zhang Y; Liu J; Li Y J Am Chem Soc; 2009 Oct; 131(40):14310-6. PubMed ID: 19764748 [TBL] [Abstract][Full Text] [Related]
32. The pH-sensitive polyampholyte nanogels: inclusion of carbon nanotubes for improved drug loading. Sankar RM; Seeni Meera KM; Samanta D; Jithendra P; Mandal AB; Jaisankar SN Colloids Surf B Biointerfaces; 2013 Dec; 112():120-7. PubMed ID: 23974001 [TBL] [Abstract][Full Text] [Related]
33. The effect of ascorbic acid on the photophysical properties and photodynamic therapy activities of zinc phthalocyanine-single walled carbon nanotube conjugate on MCF-7 cancer cells. Ogbodu RO; Nyokong T Spectrochim Acta A Mol Biomol Spectrosc; 2015; 151():174-83. PubMed ID: 26135538 [TBL] [Abstract][Full Text] [Related]
34. Optical heating and temperature determination of core-shell gold nanoparticles and single-walled carbon nanotube microparticles. Yashchenok A; Masic A; Gorin D; Inozemtseva O; Shim BS; Kotov N; Skirtach A; Möhwald H Small; 2015 Mar; 11(11):1320-7. PubMed ID: 25367373 [TBL] [Abstract][Full Text] [Related]
35. Low-temperature growth of single-walled carbon nanotubes by water plasma chemical vapor deposition. Min YS; Bae EJ; Oh BS; Kang D; Park W J Am Chem Soc; 2005 Sep; 127(36):12498-9. PubMed ID: 16144391 [TBL] [Abstract][Full Text] [Related]
36. Preparation of immunostimulatory single-walled carbon nanotube/CpG DNA complexes and evaluation of their potential in cancer immunotherapy. Zhou S; Hashida Y; Kawakami S; Mihara J; Umeyama T; Imahori H; Murakami T; Yamashita F; Hashida M Int J Pharm; 2014 Aug; 471(1-2):214-23. PubMed ID: 24861942 [TBL] [Abstract][Full Text] [Related]
37. Functionalization of single-walled carbon nanotubes with azides derived from amino acids using click chemistry. Kumar I; Rana S; Rode CV; Cho JW J Nanosci Nanotechnol; 2008 Jul; 8(7):3351-6. PubMed ID: 19051879 [TBL] [Abstract][Full Text] [Related]
38. Raman and FT-IR studies on dye-assisted dispersion and flocculation of single walled carbon nanotubes. Zhang W; Silva SR Spectrochim Acta A Mol Biomol Spectrosc; 2010 Sep; 77(1):175-8. PubMed ID: 20570553 [TBL] [Abstract][Full Text] [Related]
39. Why single-walled carbon nanotubes can be dispersed in imidazolium-based ionic liquids. Wang J; Chu H; Li Y ACS Nano; 2008 Dec; 2(12):2540-6. PubMed ID: 19206290 [TBL] [Abstract][Full Text] [Related]
40. Selective polycarboxylation of semiconducting single-walled carbon nanotubes by reductive sidewall functionalization. Gebhardt B; Hof F; Backes C; Müller M; Plocke T; Maultzsch J; Thomsen C; Hauke F; Hirsch A J Am Chem Soc; 2011 Dec; 133(48):19459-73. PubMed ID: 22035086 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]