These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 22739903)

  • 1. Towards a fiber-coupled picowatt cryogenic radiometer.
    Tomlin NA; Lehman JH; Nam S
    Opt Lett; 2012 Jun; 37(12):2346-8. PubMed ID: 22739903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon nanotube electrical-substitution cryogenic radiometer: initial results.
    Tomlin NA; Lehman JH
    Opt Lett; 2013 Jan; 38(2):175-7. PubMed ID: 23454953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental measurements and noise analysis of a cryogenic radiometer.
    Carr SM; Woods SI; Jung TM; Carter AC; Datla RU
    Rev Sci Instrum; 2014 Jul; 85(7):075105. PubMed ID: 25085171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of an absolute cryogenic radiometer as a standard detector for radiant-power measurements.
    Datla RU; Stock K; Parr AC; Hoyt CC; Miller PJ; Foukal PV
    Appl Opt; 1992 Dec; 31(34):7219-25. PubMed ID: 20802586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrically calibrated radiometer using a thin film thermopile.
    Boivin LP; Smith TC
    Appl Opt; 1978 Oct; 17(19):3067-75. PubMed ID: 20203927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Planar hyperblack absolute radiometer.
    Lehman J; Steiger A; Tomlin N; White M; Kehrt M; Ryger I; Stephens M; Monte C; Mueller I; Hollandt J; Dowell M
    Opt Express; 2016 Nov; 24(23):25911-25921. PubMed ID: 27857330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. National Institute of Standards and Technology high-accuracy cryogenic radiometer.
    Gentile TR; Houston JM; Hardis JE; Cromer CL; Parr AC
    Appl Opt; 1996 Mar; 35(7):1056-68. PubMed ID: 21085215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ACR II: improved absolute cryogenic radiometer for low background infrared calibrations.
    Carter AC; Lorentz SR; Jung TM; Datla RU
    Appl Opt; 2005 Feb; 44(6):871-5. PubMed ID: 15751676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Room-temperature calorimeter for x-ray free-electron lasers.
    Tanaka T; Kato M; Saito N; Tono K; Yabashi M; Ishikawa T
    Rev Sci Instrum; 2015 Sep; 86(9):093104. PubMed ID: 26429426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sub-picowatt resolution calorimetry with niobium nitride thin-film thermometer.
    Dechaumphai E; Chen R
    Rev Sci Instrum; 2014 Sep; 85(9):094903. PubMed ID: 25273760
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intercomparison of the LBIR Absolute Cryogenic Radiometers to the NIST Optical Power Measurement Standard.
    Fedchak JA; Carter AC; Datla R
    J Res Natl Inst Stand Technol; 2006; 111(4):325-34. PubMed ID: 27274936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blackbody heterodyne receiver for NEP measurements and wideband photodetector characterization.
    Brown ER
    Appl Opt; 1982 Oct; 21(19):3602-6. PubMed ID: 20396280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection sensitivity of laser feedback interferometry using a terahertz quantum cascade laser.
    Keeley J; Bertling K; Rubino PL; Lim YL; Taimre T; Qi X; Kundu I; Li LH; Indjin D; Rakić AD; Linfield EH; Davies AG; Cunningham J; Dean P
    Opt Lett; 2019 Jul; 44(13):3314-3317. PubMed ID: 31259948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized Electrical Substitution Methods and Detectors for Absolute Optical Power Measurements.
    Woods SI; Neira JE; Proctor JE; Rice JP; Tomlin NA; White MG; Stephens MS; Lehman JH
    Metrologia; 2022; 59(4):. PubMed ID: 36733421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of zero-bias microwave diode power detectors at cryogenic temperature.
    Giordano V; Fluhr C; Dubois B; Rubiola E
    Rev Sci Instrum; 2016 Aug; 87(8):084702. PubMed ID: 27587142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of electrical substitution Fourier transform spectrometry for absolute optical power measurements.
    Neira JE; Woods SI; Proctor JE; Rice JP
    Opt Express; 2021 Nov; 29(23):37314-37326. PubMed ID: 34808806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-linearized analog differential self-electro-optic-effect device.
    De Souza EA; Carraresi L; Boyd GD; Miller DA
    Appl Opt; 1994 Mar; 33(8):1492-7. PubMed ID: 20862176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of power induced heating and damage in fiber optic probes for near-field scanning optical microscopy.
    Dickenson NE; Erickson ES; Mooren OL; Dunn RC
    Rev Sci Instrum; 2007 May; 78(5):053712. PubMed ID: 17552830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A microcantilever heater-thermometer with a thermal isolation layer for making thermal nanotopography measurements.
    Dai Z; Corbin EA; King WP
    Nanotechnology; 2010 Feb; 21(5):055503. PubMed ID: 20023322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distributed liquid level sensors using self-heated optical fibers for cryogenic liquid management.
    Chen T; Wang Q; Chen R; Zhang B; Lin Y; Chen KP
    Appl Opt; 2012 Sep; 51(26):6282-9. PubMed ID: 22968264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.