These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 22739908)

  • 1. Complex-envelope alternating-direction-implicit FDTD method for simulating active photonic devices with semiconductor/solid-state media.
    Singh G; Ravi K; Wang Q; Ho ST
    Opt Lett; 2012 Jun; 37(12):2361-3. PubMed ID: 22739908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling magnetic photonic crystals with lossy ferrites using an efficient complex envelope alternating-direction-implicit finite-difference time-domain method.
    Singh G; Tan EL; Chen ZN
    Opt Lett; 2011 Apr; 36(8):1494-6. PubMed ID: 21499401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-step leapfrog ADI-FDTD method for simulating electromagnetic wave propagation in general dispersive media.
    Wang XH; Yin WY; Chen ZZ
    Opt Express; 2013 Sep; 21(18):20565-76. PubMed ID: 24103929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional efficient dispersive alternating-direction-implicit finite-difference time-domain algorithm using a quadratic complex rational function.
    Kim EK; Ha SG; Lee J; Park YB; Jung KY
    Opt Express; 2015 Jan; 23(2):873-81. PubMed ID: 25835847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unconditionally stable FDTD algorithm for 3-D electromagnetic simulation of nonlinear media.
    Moradi M; Pourangha SM; Nayyeri V; Soleimani M; Ramahi OM
    Opt Express; 2019 May; 27(10):15018-15031. PubMed ID: 31163941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides.
    Dissanayake CM; Premaratne M; Rukhlenko ID; Agrawal GP
    Opt Express; 2010 Sep; 18(20):21427-48. PubMed ID: 20941040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Split-step finite-difference time-domain method with perfectly matched layers for efficient analysis of two-dimensional photonic crystals with anisotropic media.
    Singh G; Tan EL; Chen ZN
    Opt Lett; 2012 Feb; 37(3):326-8. PubMed ID: 22297341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling hemoglobin at optical frequency using the unconditionally stable fundamental ADI-FDTD method.
    Heh DY; Tan EL
    Biomed Opt Express; 2011 Apr; 2(5):1169-83. PubMed ID: 21559129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media.
    Zhao S
    Opt Lett; 2011 Aug; 36(16):3245-7. PubMed ID: 21847222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational model of solid-state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by Pauli exclusion and Fermi-Dirac thermalization with application to semiconductor photonics.
    Huang Y; Ho ST
    Opt Express; 2006 Apr; 14(8):3569-87. PubMed ID: 19516504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A fast alternating direction implicit algorithm for geometric flow equations in biomolecular surface generation.
    Tian W; Zhao S
    Int J Numer Method Biomed Eng; 2014 Apr; 30(4):490-516. PubMed ID: 24574191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Near-field: a finite-difference time-dependent method for simulation of electrodynamics on small scales.
    Coomar A; Arntsen C; Lopata KA; Pistinner S; Neuhauser D
    J Chem Phys; 2011 Aug; 135(8):084121. PubMed ID: 21895173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The HIE-FDTD Method for Simulating Dispersion Media Represented by Drude, Debye, and Lorentz Models.
    Chen J; Mou C
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the ponderomotive interaction of high-power laser beams with collisional plasma: the FDTD-based approach.
    Lin Z; Chen X; Ding P; Qiu W; Pu J
    Opt Express; 2017 Apr; 25(7):8440-8449. PubMed ID: 28380955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. General finite-difference time-domain solution of an arbitrary electromagnetic source interaction with an arbitrary dielectric surface.
    Sun W; Pan H; Videen G
    Appl Opt; 2009 Nov; 48(31):6015-25. PubMed ID: 19881669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-level multi-thermal-electron FDTD simulation of plasmonic interaction with semiconducting gain media: applications to plasmonic amplifiers and nano-lasers.
    Chen X; Bhola B; Huang Y; Ho ST
    Opt Express; 2010 Aug; 18(16):17220-38. PubMed ID: 20721111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite-difference modeling of the monopole acoustic logs in a horizontally stratified porous formation.
    Guan W; Hu H; He X
    J Acoust Soc Am; 2009 Apr; 125(4):1942-50. PubMed ID: 19354370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A theoretical model for sampled grating DBR laser integrated with SOA and MZ modulator.
    Dong L; Zhao S; Jiang S; Liu S
    Opt Express; 2009 Sep; 17(19):16756-65. PubMed ID: 19770892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bistatic scattering from a three-dimensional object above a two-dimensional randomly rough surface modeled with the parallel FDTD approach.
    Guo LX; Li J; Zeng H
    J Opt Soc Am A Opt Image Sci Vis; 2009 Nov; 26(11):2383-92. PubMed ID: 19884936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition.
    Yuan X; Borup D; Wiskin J; Berggren M; Johnson SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):14-23. PubMed ID: 18238394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.