BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 22739929)

  • 1. Direct electronic linearization for camera-based spectral domain optical coherence tomography.
    Payne A; Podoleanu AG
    Opt Lett; 2012 Jun; 37(12):2424-6. PubMed ID: 22739929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Full-range k-domain linearization in spectral-domain optical coherence tomography.
    Jeon M; Kim J; Jung U; Lee C; Jung W; Boppart SA
    Appl Opt; 2011 Mar; 50(8):1158-63. PubMed ID: 21394187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple and robust calibration procedure for k-linearization and dispersion compensation in optical coherence tomography.
    Attendu X; Ruis RM; Boudoux C; van Leeuwen TG; Faber DJ
    J Biomed Opt; 2019 May; 24(5):1-11. PubMed ID: 31087833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavelength-Filter Based Spectral Calibrated Wave number - Linearization in 1.3 mm Spectral Domain Optical Coherence.
    Wijeisnghe RE; Cho NH; Park K; Shin Y; Kim J
    Int J Eng Adv Technol; 2013 Dec; 3(2):336-340. PubMed ID: 25688338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a k-space spectrometer for ultra-broad waveband spectral domain optical coherence tomography.
    Lan G; Li G
    Sci Rep; 2017 Mar; 7():42353. PubMed ID: 28266502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Balanced detection spectral domain optical coherence tomography with a multiline single camera for signal-to-noise ratio enhancement.
    Kuo WC; Lai YS; Lai CM; Huang YS
    Appl Opt; 2012 Aug; 51(24):5936-40. PubMed ID: 22907025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer.
    Hu Z; Rollins AM
    Opt Lett; 2007 Dec; 32(24):3525-7. PubMed ID: 18087530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed spectral domain polarization- sensitive optical coherence tomography using a single camera and an optical switch at 1.3 microm.
    Lee SW; Jeong HW; Kim BM
    J Biomed Opt; 2010; 15(1):010501. PubMed ID: 20210417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectral domain optical coherence tomography imaging with an integrated optics spectrometer.
    Nguyen VD; Akca BI; Wörhoff K; de Ridder RM; Pollnau M; van Leeuwen TG; Kalkman J
    Opt Lett; 2011 Apr; 36(7):1293-5. PubMed ID: 21479062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral shaping to improve the point spread function in optical coherence tomography.
    Akcay AC; Rolland JP; Eichenholz JM
    Opt Lett; 2003 Oct; 28(20):1921-3. PubMed ID: 14587776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full-range spectral domain Jones matrix optical coherence tomography using a single spectral camera.
    Fan C; Yao G
    Opt Express; 2012 Sep; 20(20):22360-71. PubMed ID: 23037384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kalman-Based Real-Time Functional Decomposition for the Spectral Calibration in Swept Source Optical Coherence Tomography.
    Zavareh AT; Hoyos S
    IEEE Trans Biomed Circuits Syst; 2020 Apr; 14(2):257-273. PubMed ID: 31751249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography.
    de Boer JF; Cense B; Park BH; Pierce MC; Tearney GJ; Bouma BE
    Opt Lett; 2003 Nov; 28(21):2067-9. PubMed ID: 14587817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-single shot axial-lateral parallel time domain optical coherence tomography with Hilbert transformation.
    Watanabe Y; Sato M
    Opt Express; 2008 Jan; 16(2):524-34. PubMed ID: 18542127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angular high-speed massively parallel detection spectral-domain optical coherence tomography for speckle reduction.
    Watanabe Y; Hasegawa H; Maeno S
    J Biomed Opt; 2011 Jun; 16(6):060504. PubMed ID: 21721798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. K-space linear Fourier domain mode locked laser and applications for optical coherence tomography.
    Eigenwillig CM; Biedermann BR; Palte G; Huber R
    Opt Express; 2008 Jun; 16(12):8916-37. PubMed ID: 18545605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital broadband linearization of optical links.
    Lam D; Fard AM; Buckley B; Jalali B
    Opt Lett; 2013 Feb; 38(4):446-8. PubMed ID: 23455097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved spectral optical coherence tomography using optical frequency comb.
    Bajraszewski T; Wojtkowski M; Szkulmowski M; Szkulmowska A; Huber R; Kowalczyk A
    Opt Express; 2008 Mar; 16(6):4163-76. PubMed ID: 18542513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compressed sensing with linear-in-wavenumber sampling in spectral-domain optical coherence tomography.
    Zhang N; Huo T; Wang C; Chen T; Zheng JG; Xue P
    Opt Lett; 2012 Aug; 37(15):3075-7. PubMed ID: 22859090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Passively Driven Probe Based on Miniaturized Propeller for Intravascular Optical Coherence Tomography.
    Lu Y; Li Z; Nan N; Bu Y; Liu X; Xu X; Wang X; Sasaki O; Wang X
    Sci Rep; 2018 Mar; 8(1):5150. PubMed ID: 29581592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.