These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 22739967)

  • 1. A comparative study for radiological decontamination of laboratory fume hood materials.
    Thomas E; Sweet L; MacFarlan P; McNamara B; Kerschner H
    Health Phys; 2012 Aug; 103(2 Suppl 2):S136-43. PubMed ID: 22739967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radioactivity decontamination of materials commonly used as surfaces in general-purpose radioisotope laboratories.
    Leonardi NM; Tesán FC; Zubillaga MB; Salgueiro MJ
    J Nucl Med Technol; 2014 Dec; 42(4):292-5. PubMed ID: 25342185
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decontamination of a technetium contaminated fume hood in a research laboratory.
    O'Dou TJ; Bertoia J; Czerwinski KR
    Health Phys; 2011 Aug; 101 Suppl 2():S124-30. PubMed ID: 21709494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Airborne nanoparticle exposures while using constant-flow, constant-velocity, and air-curtain-isolated fume hoods.
    Tsai SJ; Huang RF; Ellenbecker MJ
    Ann Occup Hyg; 2010 Jan; 54(1):78-87. PubMed ID: 19933309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Required response time for variable air volume fume hood controllers.
    Ekberg LE; Melin J
    Ann Occup Hyg; 2000 Mar; 44(2):143-50. PubMed ID: 10717266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selectivity of cesium from fission radionuclides using resorcinol-formaldehyde and zirconyl-molybdopyrophosphate as ion-exchangers.
    Shady SA
    J Hazard Mater; 2009 Aug; 167(1-3):947-52. PubMed ID: 19303707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study on decontamination of radioactive ruthenium by steel wool in waste solution (author's transl)].
    Sugimoto S; Sakaki T
    Radioisotopes; 1979 Jun; 28(6):361-6. PubMed ID: 531258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decontamination of radionuclides from skin: an overview.
    Tazrart A; Bérard P; Leiterer A; Ménétrier F
    Health Phys; 2013 Aug; 105(2):201-7. PubMed ID: 23799505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decontamination and deactivation of the power burst facility at the Idaho National Laboratory.
    Greene CJ
    Health Phys; 2007 May; 92(5 Suppl):S127-31. PubMed ID: 17440324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Returning perchlorate-contaminated fume hood systems to service. Part II. Disassembly, decontamination, disposal, and analytical procedures.
    Bader M; Phillips CC; Mueller TR; Underwood WS; Whitson SD
    Appl Occup Environ Hyg; 1999 Jun; 14(6):369-75. PubMed ID: 10429731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption reaction mechanism of some hazardous radionuclides from mixed waste by impregnated crown ether onto polymeric resin.
    Shehata FA; Attallah MF; Borai EH; Hilal MA; Abo-Aly MM
    Appl Radiat Isot; 2010 Feb; 68(2):239-49. PubMed ID: 19906532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retention efficacy and release of radioiodine in fume hoods.
    Schomäcker K; Fischer T; Zimmermanns B; Bregulla J; Sudbrock F; Prante O; Drzezga A
    J Environ Radioact; 2017 Jan; 166(Pt 1):175-180. PubMed ID: 26825260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removable coatings: Thermal stability and decontamination of steel surfaces from
    Lee EH; Boglaienko D; McNamara BK; Levitskaia TG
    Chemosphere; 2022 Aug; 301():134680. PubMed ID: 35469900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal loading as a causal factor in exceeding the 0.1 PPM laboratory fume hood control level.
    Chessin SJ; Johnston JD
    Appl Occup Environ Hyg; 2002 Jul; 17(7):512-8. PubMed ID: 12083172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of prion and tissue proteins to surgical stainless steel surfaces and the efficacy of decontamination following dry and wet storage conditions.
    Secker TJ; Hervé R; Keevil CW
    J Hosp Infect; 2011 Aug; 78(4):251-5. PubMed ID: 21658801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of published quantitative experimental studies on factors affecting laboratory fume hood performance.
    Ahn K; Woskie S; DiBerardinis L; Ellenbecker M
    J Occup Environ Hyg; 2008 Nov; 5(11):735-53. PubMed ID: 18780237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reducing employee exposure potential using the ANSI/ASHRAE 110 Method of Testing Performance of Laboratory Fume Hoods as a diagnostic tool.
    Maupins K; Hitchings DT
    Am Ind Hyg Assoc J; 1998 Feb; 59(2):133-8. PubMed ID: 9487667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of zirconium (IV) molybdo tungsto vanado silicate as a novel inorganic ion exchanger in sorption of radionuclides.
    Zonoz FM; Ahmadi SJ; Nosrati SA; Maragheh MG
    J Hazard Mater; 2009 Sep; 169(1-3):808-12. PubMed ID: 19443117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiological accident and incident in Thailand: lesson to be learned.
    Ya-anant N; Tiyapun K; Saiyut K
    Radiat Prot Dosimetry; 2011 Jul; 146(1-3):111-4. PubMed ID: 21561942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment study for multi-barrier system used in radioactive borate waste isolation based on Monte Carlo simulations.
    Bayoumi TA; Reda SM; Saleh HM
    Appl Radiat Isot; 2012 Jan; 70(1):99-102. PubMed ID: 21982736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.