These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 22740261)
1. Titanium-containing magnetic mesoporous silica spheres: effective enrichment of peptides and simultaneous separation of nonphosphopeptides and phosphopeptides. Li XS; Su X; Zhu GT; Zhao Y; Yuan BF; Guo L; Feng YQ J Sep Sci; 2012 Jun; 35(12):1506-13. PubMed ID: 22740261 [TBL] [Abstract][Full Text] [Related]
2. Preparation of titanium-grafted magnetic mesoporous silica for the enrichment of endogenous serum phosphopeptides. Li XS; Pan YN; Zhao Y; Yuan BF; Guo L; Feng YQ J Chromatogr A; 2013 Nov; 1315():61-9. PubMed ID: 24090595 [TBL] [Abstract][Full Text] [Related]
3. Titania coated magnetic mesoporous hollow silica microspheres: fabrication and application to selective enrichment of phosphopeptides. Wu JH; Li XS; Zhao Y; Gao Q; Guo L; Feng YQ Chem Commun (Camb); 2010 Dec; 46(47):9031-3. PubMed ID: 21052584 [TBL] [Abstract][Full Text] [Related]
4. Quantitative mass spectrometry combined with separation and enrichment of phosphopeptides by titania coated magnetic mesoporous silica microspheres for screening of protein kinase inhibitors. Ji L; Wu JH; Luo Q; Li X; Zheng W; Zhai G; Wang F; Lü S; Feng YQ; Liu J; Xiong S Anal Chem; 2012 Mar; 84(5):2284-91. PubMed ID: 22304342 [TBL] [Abstract][Full Text] [Related]
5. Hydrophilic modification of silica-titania mesoporous materials as restricted-access matrix adsorbents for enrichment of phosphopeptides. Wang F; Guan Y; Zhang S; Xia Y J Chromatogr A; 2012 Jul; 1246():76-83. PubMed ID: 22410151 [TBL] [Abstract][Full Text] [Related]
6. Facile synthesis of zirconium phosphonate-functionalized magnetic mesoporous silica microspheres designed for highly selective enrichment of phosphopeptides. Lu J; Li Y; Deng C Nanoscale; 2011 Mar; 3(3):1225-33. PubMed ID: 21264407 [TBL] [Abstract][Full Text] [Related]
7. Profiling of endogenous serum phosphorylated peptides by titanium (IV) immobilized mesoporous silica particles enrichment and MALDI-TOFMS detection. Hu L; Zhou H; Li Y; Sun S; Guo L; Ye M; Tian X; Gu J; Yang S; Zou H Anal Chem; 2009 Jan; 81(1):94-104. PubMed ID: 19117447 [TBL] [Abstract][Full Text] [Related]
8. Size-exclusive magnetic graphene/mesoporous silica composites with titanium(IV)-immobilized pore walls for selective enrichment of endogenous phosphorylated peptides. Sun N; Deng C; Li Y; Zhang X ACS Appl Mater Interfaces; 2014 Jul; 6(14):11799-804. PubMed ID: 24983703 [TBL] [Abstract][Full Text] [Related]
9. Phosphoric acid functionalized mesoporous organo-silica (EPO) as the adsorbent for in situ enrichment and isotope labeling of endogenous phosphopeptides. Qin H; Wang F; Wang P; Zhao L; Zhu J; Yang Q; Wu R; Ye M; Zou H Chem Commun (Camb); 2012 Jan; 48(7):961-3. PubMed ID: 22051540 [TBL] [Abstract][Full Text] [Related]
10. Development of mesoporous TiO(2) microspheres with high specific surface area for selective enrichment of phosphopeptides by mass spectrometric analysis. Tang J; Yin P; Lu X; Qi D; Mao Y; Deng C; Yang P; Zhang X J Chromatogr A; 2010 Apr; 1217(15):2197-205. PubMed ID: 20219200 [TBL] [Abstract][Full Text] [Related]
11. Designed synthesis of Graphene @titania @mesoporous silica hybrid material as size-exclusive metal oxide affinity chromatography platform for selective enrichment of endogenous phosphopeptides. Yao J; Sun N; Deng C; Zhang X Talanta; 2016 Apr; 150():296-301. PubMed ID: 26838411 [TBL] [Abstract][Full Text] [Related]
12. The synthesis of Ti-hexagonal mesoporous silica for selective capture of phosphopeptides. Zhang Y; Chen C; Qin H; Wu R; Zou H Chem Commun (Camb); 2010 Apr; 46(13):2271-3. PubMed ID: 20234929 [TBL] [Abstract][Full Text] [Related]
13. Two-in-one strategy for effective enrichment of phosphopeptides using magnetic mesoporous γ-Fe₂O₃ nanocrystal clusters. Zhang Y; Li L; Ma W; Zhang Y; Yu M; Guo J; Lu H; Wang C ACS Appl Mater Interfaces; 2013 Feb; 5(3):614-21. PubMed ID: 23294124 [TBL] [Abstract][Full Text] [Related]
14. Pseudomorphic synthesis of monodisperse magnetic mesoporous silica microspheres for selective enrichment of endogenous peptides. Zhu GT; Li XS; Gao Q; Zhao NW; Yuan BF; Feng YQ J Chromatogr A; 2012 Feb; 1224():11-8. PubMed ID: 22218330 [TBL] [Abstract][Full Text] [Related]
15. Zirconia layer coated mesoporous silica microspheres used for highly specific phosphopeptide enrichment. Wan H; Yan J; Yu L; Zhang X; Xue X; Li X; Liang X Talanta; 2010 Oct; 82(5):1701-7. PubMed ID: 20875566 [TBL] [Abstract][Full Text] [Related]
16. Application of liquid phase deposited titania nanoparticles on silica spheres to phosphopeptide enrichment and high performance liquid chromatography packings. Wu JH; Li XS; Zhao Y; Zhang W; Guo L; Feng YQ J Chromatogr A; 2011 May; 1218(20):2944-53. PubMed ID: 21470615 [TBL] [Abstract][Full Text] [Related]
17. Preparation of magnetic core-mesoporous shell microspheres with C8-modified interior pore-walls and their application in selective enrichment and analysis of mouse brain peptidome. Liu S; Li Y; Deng C; Mao Y; Zhang X; Yang P Proteomics; 2011 Dec; 11(23):4503-13. PubMed ID: 21905222 [TBL] [Abstract][Full Text] [Related]
18. Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment. Yang DS; Ding XY; Min HP; Li B; Su MX; Niu MM; Di B; Yan F J Chromatogr A; 2017 Jul; 1505():56-62. PubMed ID: 28533032 [TBL] [Abstract][Full Text] [Related]
19. Rapid enrichment of phosphopeptides by SiO2-TiO2 composite fibers. He XM; Zhu GT; Li XS; Yuan BF; Shi ZG; Feng YQ Analyst; 2013 Sep; 138(18):5495-502. PubMed ID: 23892395 [TBL] [Abstract][Full Text] [Related]
20. Preparation of magnetic hydroxyapatite clusters and their application in the enrichment of phosphopeptides. Yu Q; Li XS; Yuan BF; Feng YQ J Sep Sci; 2014 Mar; 37(5):580-6. PubMed ID: 24347473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]