These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Immunohistochemical study of flotillin-1 in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis. Kim H; Ahn M; Moon C; Matsumoto Y; Sung Koh C; Shin T Brain Res; 2006 Oct; 1114(1):204-11. PubMed ID: 16919610 [TBL] [Abstract][Full Text] [Related]
4. Expression of caveolin-1, -2, and -3 in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis. Shin T; Kim H; Jin JK; Moon C; Ahn M; Tanuma N; Matsumoto Y J Neuroimmunol; 2005 Aug; 165(1-2):11-20. PubMed ID: 15925413 [TBL] [Abstract][Full Text] [Related]
5. Increased phosphorylation of cyclic AMP response element-binding protein in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis. Kim H; Moon C; Ahn M; Lee Y; Kim S; Matsumoto Y; Koh CS; Kim MD; Shin T Brain Res; 2007 Aug; 1162():113-20. PubMed ID: 17617386 [TBL] [Abstract][Full Text] [Related]
6. Apoptosis of V beta 8.2+ T lymphocytes in the spinal cord during recovery from experimental autoimmune encephalomyelitis induced in Lewis rats by inoculation with myelin basic protein. McCombe PA; Nickson I; Tabi Z; Pender MP J Neurol Sci; 1996 Jul; 139(1):1-6. PubMed ID: 8836965 [TBL] [Abstract][Full Text] [Related]
7. Increased phosphorylation of caveolin-1 in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis. Kim H; Ahn M; Lee J; Moon C; Matsumoto Y; Koh CS; Shin T Neurosci Lett; 2006 Jul; 402(1-2):76-80. PubMed ID: 16678345 [TBL] [Abstract][Full Text] [Related]
8. Proteomic analysis of injured spinal cord tissue proteins using 2-DE and MALDI-TOF MS. Kang SK; So HH; Moon YS; Kim CH Proteomics; 2006 May; 6(9):2797-812. PubMed ID: 16586436 [TBL] [Abstract][Full Text] [Related]
9. Immunohistochemical studies on disabled-2 protein in the spinal cords of rats with experimental autoimmune encephalomyelitis. Ahn M; Oh H; Lee W; Kim H; Moon C; Shin T Brain Res; 2011 Oct; 1416():51-60. PubMed ID: 21890121 [TBL] [Abstract][Full Text] [Related]
10. The relationship between aquaporin-4 expression and blood-brain and spinal cord barrier permeability following experimental autoimmune encephalomyelitis in the rat. Huang XN; Wang WZ; Fu J; Wang HB Anat Rec (Hoboken); 2011 Jan; 294(1):46-54. PubMed ID: 21157915 [TBL] [Abstract][Full Text] [Related]
11. Immunohistochemical study of netrin-1 in the spinal cord with rat experimental autoimmune encephalomyelitis. Moon C; Ahn M; Jeong C; Kim H; Shin T Immunol Invest; 2011; 40(2):160-71. PubMed ID: 21062237 [TBL] [Abstract][Full Text] [Related]
12. NG2 positive cells of rat spinal cord activated during experimental autoimmune encephalomyelitis are spatially associated with radially oriented astroglia and express p75 receptor: a role for nerve growth factor in oligodendrocyte progenitor migration? Oderfeld-Nowak B; Zaremba M; Kwiatkowska-Patzer B; Lipkowski AW; Kurkowska-Jastrzebska I; Triaca V; Aloe L Arch Ital Biol; 2009 Dec; 147(4):105-15. PubMed ID: 20162860 [TBL] [Abstract][Full Text] [Related]
13. The distribution of inflammatory demyelinated lesions in the central nervous system of rats with antibody-augmented demyelinating experimental allergic encephalomyelitis. Meeson AP; Piddlesden S; Morgan BP; Reynolds R Exp Neurol; 1994 Oct; 129(2):299-310. PubMed ID: 7525334 [TBL] [Abstract][Full Text] [Related]
14. Expression of osteopontin and its ligand, CD44, in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis. Kim MD; Cho HJ; Shin T J Neuroimmunol; 2004 Jun; 151(1-2):78-84. PubMed ID: 15145606 [TBL] [Abstract][Full Text] [Related]
15. Vitamin K2 ameliorates experimental autoimmune encephalomyelitis in Lewis rats. Moriya M; Nakatsuji Y; Okuno T; Hamasaki T; Sawada M; Sakoda S J Neuroimmunol; 2005 Dec; 170(1-2):11-20. PubMed ID: 16146654 [TBL] [Abstract][Full Text] [Related]
16. Experimental autoimmune encephalomyelitis: the antigen specificity of T lymphocytes determines the topography of lesions in the central and peripheral nervous system. Berger T; Weerth S; Kojima K; Linington C; Wekerle H; Lassmann H Lab Invest; 1997 Mar; 76(3):355-64. PubMed ID: 9121118 [TBL] [Abstract][Full Text] [Related]
17. The use of digital technology to asses the severity of the Experimental Allergic Encephalomyelitis (EAE) spinal cord lesion. Mohamed A; Tarhuni H; Dufan T; Benghuzzi H; Tucci M Biomed Sci Instrum; 2004; 40():419-23. PubMed ID: 15133994 [TBL] [Abstract][Full Text] [Related]
18. Recovery of myelin basic protein reactive T cells from spinal cords of Lewis rats with autoimmune encephalomyelitis. Burns J; Rosenzweig A; Zweiman B; Moskovitz A; Lisak R J Immunol; 1984 Jun; 132(6):2690-2. PubMed ID: 6202757 [TBL] [Abstract][Full Text] [Related]
19. Elevated levels of nerve growth factor in the thalamus and spinal cord of rats affected by experimental allergic encephalomyelitis. Micera A; De Simone R; Aloe L Arch Ital Biol; 1995 Mar; 133(2):131-42. PubMed ID: 7625888 [TBL] [Abstract][Full Text] [Related]
20. Immunohistochemical localization of Bcl-2 in the spinal cords of rats with experimental autoimmune encephalomyelitis. Moon CJ; Lee YD; Shin TK J Vet Sci; 2002 Dec; 3(4):279-83. PubMed ID: 12819378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]