These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22740379)

  • 1. A solid-state plasmonic solar cell via metal nanoparticle self-assembly.
    Reineck P; Lee GP; Brick D; Karg M; Mulvaney P; Bach U
    Adv Mater; 2012 Sep; 24(35):4750-5, 4729. PubMed ID: 22740379
    [No Abstract]   [Full Text] [Related]  

  • 2. Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells.
    Choi H; Lee JP; Ko SJ; Jung JW; Park H; Yoo S; Park O; Jeong JR; Park S; Kim JY
    Nano Lett; 2013 May; 13(5):2204-8. PubMed ID: 23611150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-passivated plasmonic nano-pyramids for bulk heterojunction solar cell photocurrent enhancement.
    Kirkeminde A; Retsch M; Wang Q; Xu G; Hui R; Wu J; Ren S
    Nanoscale; 2012 Aug; 4(15):4421-5. PubMed ID: 22695531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the plasmonic properties of dewetting formed Ag nanoparticles for large area solar cell applications.
    Günendi MC; Tanyeli İ; Akgüç GB; Bek A; Turan R; Gülseren O
    Opt Express; 2013 Jul; 21(15):18344-53. PubMed ID: 23938706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual plasmonic nanostructures for high performance inverted organic solar cells.
    Li X; Choy WC; Huo L; Xie F; Sha WE; Ding B; Guo X; Li Y; Hou J; You J; Yang Y
    Adv Mater; 2012 Jun; 24(22):3046-52. PubMed ID: 22566360
    [No Abstract]   [Full Text] [Related]  

  • 6. Coupled near- and far-field scattering in silver nanoparticles for high-efficiency, stable, and thin plasmonic dye-sensitized solar cells.
    Adhyaksa GW; Baek SW; Lee GI; Lee DK; Lee JY; Kang JK
    ChemSusChem; 2014 Sep; 7(9):2461-8. PubMed ID: 24919576
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct growth of metal sulfide nanoparticle networks in solid-state polymer films for hybrid inorganic-organic solar cells.
    Dowland S; Lutz T; Ward A; King SP; Sudlow A; Hill MS; Molloy KC; Haque SA
    Adv Mater; 2011 Jun; 23(24):2739-44. PubMed ID: 21520466
    [No Abstract]   [Full Text] [Related]  

  • 8. Electron accumulation on metal nanoparticles in plasmon-enhanced organic solar cells.
    Salvador M; MacLeod BA; Hess A; Kulkarni AP; Munechika K; Chen JI; Ginger DS
    ACS Nano; 2012 Nov; 6(11):10024-32. PubMed ID: 23062171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex.
    Choi I; Song HD; Lee S; Yang YI; Kang T; Yi J
    J Am Chem Soc; 2012 Jul; 134(29):12083-90. PubMed ID: 22746373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of shell thickness of Au@TiO2 core-shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells.
    Liu WL; Lin FC; Yang YC; Huang CH; Gwo S; Huang MH; Huang JS
    Nanoscale; 2013 Sep; 5(17):7953-62. PubMed ID: 23860734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing photocurrents in dye sensitized solar cells with tantalum-doped titanium oxide photoanodes obtained by laser ablation.
    Ghosh R; Hara Y; Alibabaei L; Hanson K; Rangan S; Bartynski R; Meyer TJ; Lopez R
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4566-70. PubMed ID: 22869506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of Mott-Schottky heterojunctions in Ag-Ag8SnS6 as counter electrodes in dye-sensitized solar cells.
    He Q; Huang S; Wang C; Qiao Q; Liang N; Xu M; Chen W; Zai J; Qian X
    ChemSusChem; 2015 Mar; 8(5):817-20. PubMed ID: 25619568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver Nanowire Top Electrodes in Flexible Perovskite Solar Cells using Titanium Metal as Substrate.
    Lee M; Ko Y; Min BK; Jun Y
    ChemSusChem; 2016 Jan; 9(1):31-5. PubMed ID: 26612081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct assembly of preformed nanoparticles and graft copolymer for the fabrication of micrometer-thick, organized TiO2 films: high efficiency solid-state dye-sensitized solar cells.
    Ahn SH; Chi WS; Park JT; Koh JK; Roh DK; Kim JH
    Adv Mater; 2012 Jan; 24(4):519-22. PubMed ID: 22213245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of Silver and Gold Nanoparticles: Preservation and Improvement of Plasmonic Functionalities.
    Kang H; Buchman JT; Rodriguez RS; Ring HL; He J; Bantz KC; Haynes CL
    Chem Rev; 2019 Jan; 119(1):664-699. PubMed ID: 30346757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmonic dye-sensitized solar cells using core-shell metal-insulator nanoparticles.
    Brown MD; Suteewong T; Kumar RS; D'Innocenzo V; Petrozza A; Lee MM; Wiesner U; Snaith HJ
    Nano Lett; 2011 Feb; 11(2):438-45. PubMed ID: 21194204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved dye sensitized solar cell performance in larger cell size by using TiO₂ nanotubes.
    Zhang Y; Khamwannah J; Kim H; Noh SY; Yang H; Jin S
    Nanotechnology; 2013 Feb; 24(4):045401. PubMed ID: 23299151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of conversion efficiency for multi-junction solar cells by incorporation of Au nanoclusters.
    Yang MD; Liu YK; Shen JL; Wu CH; Lin CA; Chang WH; Wang HH; Yeh HI; Chan WH; Parak WJ
    Opt Express; 2008 Sep; 16(20):15754-8. PubMed ID: 18825214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of dye-sensitized photocurrents by gold nanoparticles: effects of dye-particle spacing.
    Kawawaki T; Takahashi Y; Tatsuma T
    Nanoscale; 2011 Jul; 3(7):2865-7. PubMed ID: 21681292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic protein electricity generator.
    Paul N; Suresh L; Chen Y; Zhang Y; Alzakia FI; Vogt V; Jones MR; Wong ZJ; Tan SC
    Nanoscale Horiz; 2022 Jan; 7(2):220-234. PubMed ID: 35043802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.