These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 22740513)

  • 21. Propulsive performance of an under-actuated robotic ribbon fin.
    Liu H; Curet OM
    Bioinspir Biomim; 2017 Jun; 12(3):036015. PubMed ID: 28481218
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fish-like aquatic propulsion studied using a pneumatically-actuated soft-robotic model.
    Wolf Z; Jusufi A; Vogt DM; Lauder GV
    Bioinspir Biomim; 2020 Jun; 15(4):046008. PubMed ID: 32330908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechatronic design and locomotion control of a robotic thunniform swimmer for fast cruising.
    Hu Y; Liang J; Wang T
    Bioinspir Biomim; 2015 Mar; 10(2):026006. PubMed ID: 25822708
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanisms of anguilliform locomotion in fishes studied using simple three-dimensional physical models.
    Lim JL; Lauder GV
    Bioinspir Biomim; 2016 Jul; 11(4):046006. PubMed ID: 27378052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of biorobotic models of highly deformable fins for studying the mechanics and control of fin forces in fishes.
    Tangorra J; Phelan C; Esposito C; Lauder G
    Integr Comp Biol; 2011 Jul; 51(1):176-89. PubMed ID: 21653544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolutionary multiobjective design of a flexible caudal fin for robotic fish.
    Clark AJ; Tan X; McKinley PK
    Bioinspir Biomim; 2015 Nov; 10(6):065006. PubMed ID: 26601975
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fish locomotion: recent advances and new directions.
    Lauder GV
    Ann Rev Mar Sci; 2015; 7():521-45. PubMed ID: 25251278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A multi-body dynamics based numerical modelling tool for solving aquatic biomimetic problems.
    Li R; Xiao Q; Liu Y; Hu J; Li L; Li G; Liu H; Hu K; Wen L
    Bioinspir Biomim; 2018 Jul; 13(5):056001. PubMed ID: 29916395
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In-line swimming dynamics revealed by fish interacting with a robotic mechanism.
    Thandiackal R; Lauder G
    Elife; 2023 Feb; 12():. PubMed ID: 36744863
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Swimming near the substrate: a simple robotic model of stingray locomotion.
    Blevins E; Lauder GV
    Bioinspir Biomim; 2013 Mar; 8(1):016005. PubMed ID: 23318215
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical and numerical studies on a five-ray flexible pectoral fin during labriform swimming.
    Weng J; Zhu Y; Du X; Yang G; Hu D
    Bioinspir Biomim; 2019 Dec; 15(1):016007. PubMed ID: 31694000
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tail-stiffness optimization for a flexible robotic fish.
    Zou Q; Zhou C; Lu B; Liao X; Zhang Z
    Bioinspir Biomim; 2022 Sep; 17(6):. PubMed ID: 35896103
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrodynamics of a Flexible Soft-Rayed Caudal Fin.
    Iosilevskii G
    PLoS One; 2016; 11(10):e0163517. PubMed ID: 27695043
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Escaping Flatland: three-dimensional kinematics and hydrodynamics of median fins in fishes.
    Tytell ED; Standen EM; Lauder GV
    J Exp Biol; 2008 Jan; 211(Pt 2):187-95. PubMed ID: 18165246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrodynamic study of freely swimming shark fish propulsion for marine vehicles using 2D particle image velocimetry.
    Babu MN; Mallikarjuna JM; Krishnankutty P
    Robotics Biomim; 2016; 3():3. PubMed ID: 27077022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flexibility is a hidden axis of biomechanical diversity in fishes.
    Jimenez YE; Lucas KN; Long JH; Tytell ED
    J Exp Biol; 2023 Apr; 226(Suppl_1):. PubMed ID: 37086034
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bio-inspired aquatic robotics by untethered piezohydroelastic actuation.
    Cen L; Erturk A
    Bioinspir Biomim; 2013 Mar; 8(1):016006. PubMed ID: 23348365
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Turbulence: does vorticity affect the structure and shape of body and fin propulsors?
    Webb PW; Cotel AJ
    Integr Comp Biol; 2010 Dec; 50(6):1155-66. PubMed ID: 21558264
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical investigation of the hydrodynamics of carangiform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2008 May; 211(Pt 10):1541-58. PubMed ID: 18456881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a bio-inspired transformable robotic fin.
    Yang Y; Xia Y; Qin F; Xu M; Li W; Zhang S
    Bioinspir Biomim; 2016 Aug; 11(5):056010. PubMed ID: 27580003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.