These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22740702)

  • 1. 13C-flux analysis reveals NADPH-balancing transhydrogenation cycles in stationary phase of nitrogen-starving Bacillus subtilis.
    Rühl M; Le Coq D; Aymerich S; Sauer U
    J Biol Chem; 2012 Aug; 287(33):27959-70. PubMed ID: 22740702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bifunctional Malic/Malolactic Enzyme Provides a Novel Mechanism for NADPH-Balancing in Bacillus subtilis.
    Hörl M; Fuhrer T; Zamboni N
    mBio; 2021 Apr; 12(2):. PubMed ID: 33824210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CcpN controls central carbon fluxes in Bacillus subtilis.
    Tännler S; Fischer E; Le Coq D; Doan T; Jamet E; Sauer U; Aymerich S
    J Bacteriol; 2008 Sep; 190(18):6178-87. PubMed ID: 18586936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic fluxes in riboflavin-producing Bacillus subtilis.
    Sauer U; Hatzimanikatis V; Bailey JE; Hochuli M; Szyperski T; Wüthrich K
    Nat Biotechnol; 1997 May; 15(5):448-52. PubMed ID: 9131624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism.
    Fuhrer T; Sauer U
    J Bacteriol; 2009 Apr; 191(7):2112-21. PubMed ID: 19181802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of NADPH bioavailability in Escherichia coli by replacing NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase GapA with NADP (+)-dependent GapB from Bacillus subtilis and addition of NAD kinase.
    Wang Y; San KY; Bennett GN
    J Ind Microbiol Biotechnol; 2013 Dec; 40(12):1449-60. PubMed ID: 24048943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the impact of the cofactor swapping of isocitrate dehydrogenase over the growth phenotype of Escherichia coli on acetate by using constraint-based modeling.
    Armingol E; Tobar E; Cabrera R
    PLoS One; 2018; 13(4):e0196182. PubMed ID: 29677222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic flux responses in riboflavin overproducing Bacillus subtilis to increasing glucose limitation in fed-batch culture.
    Rühl M; Zamboni N; Sauer U
    Biotechnol Bioeng; 2010 Mar; 105(4):795-804. PubMed ID: 19882734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. YtsJ has the major physiological role of the four paralogous malic enzyme isoforms in Bacillus subtilis.
    Lerondel G; Doan T; Zamboni N; Sauer U; Aymerich S
    J Bacteriol; 2006 Jul; 188(13):4727-36. PubMed ID: 16788182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis.
    He L; Xiao Y; Gebreselassie N; Zhang F; Antoniewiez MR; Tang YJ; Peng L
    Biotechnol Bioeng; 2014 Mar; 111(3):575-85. PubMed ID: 24122357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture.
    Dauner M; Storni T; Sauer U
    J Bacteriol; 2001 Dec; 183(24):7308-17. PubMed ID: 11717290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 13 C-metabolic flux analysis in heterologous cellulase production by Bacillus subtilis genome-reduced strain.
    Toya Y; Hirasawa T; Morimoto T; Masuda K; Kageyama Y; Ozaki K; Ogasawara N; Shimizu H
    J Biotechnol; 2014 Jun; 179():42-9. PubMed ID: 24667539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of Proteins Out of Service: the GapB Case of Bacillus subtilis.
    Gerth U; Krieger E; Zühlke D; Reder A; Völker U; Hecker M
    J Bacteriol; 2017 Oct; 199(20):. PubMed ID: 28760849
    [No Abstract]   [Full Text] [Related]  

  • 14. Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis.
    Dauner M; Bailey JE; Sauer U
    Biotechnol Bioeng; 2001 Sep; 76(2):144-56. PubMed ID: 11505384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic fluxes during strong carbon catabolite repression by malate in Bacillus subtilis.
    Kleijn RJ; Buescher JM; Le Chat L; Jules M; Aymerich S; Sauer U
    J Biol Chem; 2010 Jan; 285(3):1587-96. PubMed ID: 19917605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental dependence of stationary-phase metabolism in Bacillus subtilis and Escherichia coli.
    Chubukov V; Sauer U
    Appl Environ Microbiol; 2014 May; 80(9):2901-9. PubMed ID: 24584250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 13C tracer experiments and metabolite balancing for metabolic flux analysis: comparing two approaches.
    Schmidt K; Marx A; de Graaf AA ; Wiechert W; Sahm H; Nielsen J; Villadsen J
    Biotechnol Bioeng; 1998 Apr; 58(2-3):254-7. PubMed ID: 10191397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the central carbon metabolism of Sorangium cellulosum: metabolic network reconstruction and quantification of pathway fluxes.
    Bolten CJ; Heinzle E; Müller R; Wittmann C
    J Microbiol Biotechnol; 2009 Jan; 19(1):23-36. PubMed ID: 19190405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular carbon fluxes in riboflavin-producing Bacillus subtilis during growth on two-carbon substrate mixtures.
    Dauner M; Sonderegger M; Hochuli M; Szyperski T; Wüthrich K; Hohmann HP; Sauer U; Bailey JE
    Appl Environ Microbiol; 2002 Apr; 68(4):1760-71. PubMed ID: 11916694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-stationary (13)C-metabolic flux ratio analysis.
    Hörl M; Schnidder J; Sauer U; Zamboni N
    Biotechnol Bioeng; 2013 Dec; 110(12):3164-76. PubMed ID: 23860906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.