These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 22741026)
1. Multi-Sectional Views Textural Based SVM for MS Lesion Segmentation in Multi-Channels MRIs. Abdullah BA; Younis AA; John NM Open Biomed Eng J; 2012; 6():56-72. PubMed ID: 22741026 [TBL] [Abstract][Full Text] [Related]
2. Limited One-time Sampling Irregularity Map (LOTS-IM) for Automatic Unsupervised Assessment of White Matter Hyperintensities and Multiple Sclerosis Lesions in Structural Brain Magnetic Resonance Images. Rachmadi MF; Valdés-Hernández MDC; Li H; Guerrero R; Meijboom R; Wiseman S; Waldman A; Zhang J; Rueckert D; Wardlaw J; Komura T Comput Med Imaging Graph; 2020 Jan; 79():101685. PubMed ID: 31846826 [TBL] [Abstract][Full Text] [Related]
3. Adaptive multi-level conditional random fields for detection and segmentation of small enhanced pathology in medical images. Karimaghaloo Z; Arnold DL; Arbel T Med Image Anal; 2016 Jan; 27():17-30. PubMed ID: 26211811 [TBL] [Abstract][Full Text] [Related]
4. Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images. Khastavaneh H; Ebrahimpour-Komleh H J Biomed Phys Eng; 2017 Jun; 7(2):155-162. PubMed ID: 28580337 [TBL] [Abstract][Full Text] [Related]
5. Automatic knee cartilage segmentation from multi-contrast MR images using support vector machine classification with spatial dependencies. Zhang K; Lu W; Marziliano P Magn Reson Imaging; 2013 Dec; 31(10):1731-43. PubMed ID: 23867282 [TBL] [Abstract][Full Text] [Related]
6. Multi-Output Decision Trees for Lesion Segmentation in Multiple Sclerosis. Jog A; Carass A; Pham DL; Prince JL Proc SPIE Int Soc Opt Eng; 2015 Feb; 9413():. PubMed ID: 27695155 [TBL] [Abstract][Full Text] [Related]
7. Comparing lesion segmentation methods in multiple sclerosis: Input from one manually delineated subject is sufficient for accurate lesion segmentation. Weeda MM; Brouwer I; de Vos ML; de Vries MS; Barkhof F; Pouwels PJW; Vrenken H Neuroimage Clin; 2019; 24():102074. PubMed ID: 31734527 [TBL] [Abstract][Full Text] [Related]
8. Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging. García-Lorenzo D; Francis S; Narayanan S; Arnold DL; Collins DL Med Image Anal; 2013 Jan; 17(1):1-18. PubMed ID: 23084503 [TBL] [Abstract][Full Text] [Related]
10. Rotation-invariant multi-contrast non-local means for MS lesion segmentation. Guizard N; Coupé P; Fonov VS; Manjón JV; Arnold DL; Collins DL Neuroimage Clin; 2015; 8():376-89. PubMed ID: 26106563 [TBL] [Abstract][Full Text] [Related]
11. Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images. Jain S; Sima DM; Ribbens A; Cambron M; Maertens A; Van Hecke W; De Mey J; Barkhof F; Steenwijk MD; Daams M; Maes F; Van Huffel S; Vrenken H; Smeets D Neuroimage Clin; 2015; 8():367-75. PubMed ID: 26106562 [TBL] [Abstract][Full Text] [Related]
12. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. Valverde S; Cabezas M; Roura E; González-Villà S; Pareto D; Vilanova JC; Ramió-Torrentà L; Rovira À; Oliver A; Lladó X Neuroimage; 2017 Jul; 155():159-168. PubMed ID: 28435096 [TBL] [Abstract][Full Text] [Related]
13. Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation. Essa E; Aldesouky D; Hussein SE; Rashad MZ Med Biol Eng Comput; 2020 Sep; 58(9):2161-2175. PubMed ID: 32681214 [TBL] [Abstract][Full Text] [Related]
14. Automated segmentation of the parotid gland based on atlas registration and machine learning: a longitudinal MRI study in head-and-neck radiation therapy. Yang X; Wu N; Cheng G; Zhou Z; Yu DS; Beitler JJ; Curran WJ; Liu T Int J Radiat Oncol Biol Phys; 2014 Dec; 90(5):1225-33. PubMed ID: 25442347 [TBL] [Abstract][Full Text] [Related]
16. A novel extended Kalman filter with support vector machine based method for the automatic diagnosis and segmentation of brain tumors. Chen B; Zhang L; Chen H; Liang K; Chen X Comput Methods Programs Biomed; 2021 Mar; 200():105797. PubMed ID: 33317871 [TBL] [Abstract][Full Text] [Related]
17. Multiple Sclerosis Lesions Segmentation in Magnetic Resonance Imaging using Ensemble Support Vector Machine (ESVM). HosseiniPanah S; Zamani A; Emadi F; HamtaeiPour F J Biomed Phys Eng; 2019 Dec; 9(6):699-710. PubMed ID: 32039101 [TBL] [Abstract][Full Text] [Related]
18. Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3D convolutional neural networks. Krüger J; Opfer R; Gessert N; Ostwaldt AC; Manogaran P; Kitzler HH; Schlaefer A; Schippling S Neuroimage Clin; 2020; 28():102445. PubMed ID: 33038667 [TBL] [Abstract][Full Text] [Related]
19. A fully automated pipeline for brain structure segmentation in multiple sclerosis. González-Villà S; Oliver A; Huo Y; Lladó X; Landman BA Neuroimage Clin; 2020; 27():102306. PubMed ID: 32585568 [TBL] [Abstract][Full Text] [Related]
20. Performance of five research-domain automated WM lesion segmentation methods in a multi-center MS study. de Sitter A; Steenwijk MD; Ruet A; Versteeg A; Liu Y; van Schijndel RA; Pouwels PJW; Kilsdonk ID; Cover KS; van Dijk BW; Ropele S; Rocca MA; Yiannakas M; Wattjes MP; Damangir S; Frisoni GB; Sastre-Garriga J; Rovira A; Enzinger C; Filippi M; Frederiksen J; Ciccarelli O; Kappos L; Barkhof F; Vrenken H; Neuroimage; 2017 Dec; 163():106-114. PubMed ID: 28899746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]