BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1068 related articles for article (PubMed ID: 22741162)

  • 1. Ultrasensitive colorimetric detection of heparin based on self-assembly of gold nanoparticles on graphene oxide.
    Fu X; Chen L; Li J
    Analyst; 2012 Aug; 137(16):3653-8. PubMed ID: 22741162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free colorimetric sensor for ultrasensitive detection of heparin based on color quenching of gold nanorods by graphene oxide.
    Fu X; Chen L; Li J; Lin M; You H; Wang W
    Biosens Bioelectron; 2012 Apr; 34(1):227-31. PubMed ID: 22387039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blue-to-red colorimetric sensing strategy for Hg²⁺ and Ag⁺ via redox-regulated surface chemistry of gold nanoparticles.
    Lou T; Chen Z; Wang Y; Chen L
    ACS Appl Mater Interfaces; 2011 May; 3(5):1568-73. PubMed ID: 21469714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical sensing of biomedically important polyionic drugs using nano-sized gold particles.
    Jena BK; Raj CR
    Biosens Bioelectron; 2008 Mar; 23(8):1285-90. PubMed ID: 18191561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes.
    Cao R; Li B
    Chem Commun (Camb); 2011 Mar; 47(10):2865-7. PubMed ID: 21246153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free colorimetric biosensing of copper(II) ions with unimolecular self-cleaving deoxyribozymes and unmodified gold nanoparticle probes.
    Wang Y; Yang F; Yang X
    Nanotechnology; 2010 May; 21(20):205502. PubMed ID: 20418604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Naked eye detection of infertility based on sperm protamine-induced aggregation of heparin gold nanoparticles.
    Vidya R; Saji A
    Anal Bioanal Chem; 2018 May; 410(13):3053-3058. PubMed ID: 29582121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold nanoparticle coupled with fluorophore for ultrasensitive detection of protamine and heparin.
    Zhao J; Yi Y; Mi N; Yin B; Wei M; Chen Q; Li H; Zhang Y; Yao S
    Talanta; 2013 Nov; 116():951-7. PubMed ID: 24148500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A label-free protamine-assisted colorimetric sensor for highly sensitive detection of S1 nuclease activity.
    Wen J; Liu Y; Li J; Lin H; Zheng Y; Chen Y; Fu X; Chen L
    Analyst; 2020 Apr; 145(7):2774-2778. PubMed ID: 32096809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid visual detection of aluminium ion using citrate capped gold nanoparticles.
    Chen S; Fang YM; Xiao Q; Li J; Li SB; Chen HJ; Sun JJ; Yang HH
    Analyst; 2012 May; 137(9):2021-3. PubMed ID: 22413128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-independent optical sensing of heparin based on ionic liquid-capped gold nanoparticles.
    Hemmateenejad B; Dorostkar S; Shakerizadeh-Shirazi F; Shamsipur M
    Analyst; 2013 Sep; 138(17):4830-7. PubMed ID: 23826612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel homogeneous label-free aptasensor for 2,4,6-trinitrotoluene detection based on an assembly strategy of electrochemiluminescent graphene oxide with gold nanoparticles and aptamer.
    Yu Y; Cao Q; Zhou M; Cui H
    Biosens Bioelectron; 2013 May; 43():137-42. PubMed ID: 23298624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct colorimetric biosensing of mercury(II) ion based on aggregation of poly-(γ-glutamic acid)-functionalized gold nanoparticles.
    Guan H; Liu X; Wang W; Liang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2014; 121():527-32. PubMed ID: 24291429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aqueous zymography screening of matrix metalloproteinase activity and inhibition based on colorimetric gold nanoparticles.
    Chuang YC; Huang WT; Chiang PH; Tang MC; Lin CS
    Biosens Bioelectron; 2012 Feb; 32(1):24-31. PubMed ID: 22192454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Mn2+ on oligonucleotide-gold nanoparticle hybrids for colorimetric sensing of Hg2+: improving colorimetric sensitivity and accelerating color change.
    Yu CJ; Cheng TL; Tseng WL
    Biosens Bioelectron; 2009 Sep; 25(1):204-10. PubMed ID: 19631521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A label-free colorimetric sensor for Pb2+ detection based on the acceleration of gold leaching by graphene oxide.
    Shi X; Gu W; Zhang C; Zhao L; Peng W; Xian Y
    Dalton Trans; 2015 Mar; 44(10):4623-9. PubMed ID: 25656247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel label-free upconversion fluorescence resonance energy transfer-nanosensor for ultrasensitive detection of protamine and heparin.
    Long Q; Zhao J; Yin B; Li H; Zhang Y; Yao S
    Anal Biochem; 2015 May; 477():28-34. PubMed ID: 25721409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple, label-free AuNPs-based colorimetric ultrasensitive detection of nerve agents and highly toxic organophosphate pesticide.
    Sun J; Guo L; Bao Y; Xie J
    Biosens Bioelectron; 2011 Oct; 28(1):152-7. PubMed ID: 21803563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colorimetric sensing of silver(I) and mercury(II) ions based on an assembly of Tween 20-stabilized gold nanoparticles.
    Lin CY; Yu CJ; Lin YH; Tseng WL
    Anal Chem; 2010 Aug; 82(16):6830-7. PubMed ID: 20704372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly selective and sensitive gold nanoparticle-based colorimetric assay for PO₄³⁻ in aqueous solution.
    He G; Zhao L; Chen K; Liu Y; Zhu H
    Talanta; 2013 Mar; 106():73-8. PubMed ID: 23598097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 54.