These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22741570)

  • 1. Molecular evolution of dihydrouridine synthases.
    Kasprzak JM; Czerwoniec A; Bujnicki JM
    BMC Bioinformatics; 2012 Jun; 13():153. PubMed ID: 22741570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolutionary Diversity of Dus2 Enzymes Reveals Novel Structural and Functional Features among Members of the RNA Dihydrouridine Synthases Family.
    Lombard M; Reed CJ; Pecqueur L; Faivre B; Toubdji S; Sudol C; Brégeon D; de Crécy-Lagard V; Hamdane D
    Biomolecules; 2022 Nov; 12(12):. PubMed ID: 36551188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular basis of dihydrouridine formation on tRNA.
    Yu F; Tanaka Y; Yamashita K; Suzuki T; Nakamura A; Hirano N; Suzuki T; Yao M; Tanaka I
    Proc Natl Acad Sci U S A; 2011 Dec; 108(49):19593-8. PubMed ID: 22123979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unveiling structural and functional divergences of bacterial tRNA dihydrouridine synthases: perspectives on the evolution scenario.
    Bou-Nader C; Montémont H; Guérineau V; Jean-Jean O; Brégeon D; Hamdane D
    Nucleic Acids Res; 2018 Feb; 46(3):1386-1394. PubMed ID: 29294097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the tRNA-dihydrouridine synthase family.
    Bishop AC; Xu J; Johnson RC; Schimmel P; de Crécy-Lagard V
    J Biol Chem; 2002 Jul; 277(28):25090-5. PubMed ID: 11983710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic Potential in the tRNA Binding Evolution of Dihydrouridine Synthases.
    Bou-Nader C; Brégeon D; Pecqueur L; Fontecave M; Hamdane D
    Biochemistry; 2018 Sep; 57(37):5407-5414. PubMed ID: 30149704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro dihydrouridine formation by tRNA dihydrouridine synthase from Thermus thermophilus, an extreme-thermophilic eubacterium.
    Kusuba H; Yoshida T; Iwasaki E; Awai T; Kazayama A; Hirata A; Tomikawa C; Yamagami R; Hori H
    J Biochem; 2015 Dec; 158(6):513-21. PubMed ID: 26112661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Major reorientation of tRNA substrates defines specificity of dihydrouridine synthases.
    Byrne RT; Jenkins HT; Peters DT; Whelan F; Stowell J; Aziz N; Kasatsky P; Rodnina MV; Koonin EV; Konevega AL; Antson AA
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6033-7. PubMed ID: 25902496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular determinants of dihydrouridine synthase activity.
    Savage DF; de Crécy-Lagard V; Bishop AC
    FEBS Lett; 2006 Oct; 580(22):5198-202. PubMed ID: 16962594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel human tRNA-dihydrouridine synthase involved in pulmonary carcinogenesis.
    Kato T; Daigo Y; Hayama S; Ishikawa N; Yamabuki T; Ito T; Miyamoto M; Kondo S; Nakamura Y
    Cancer Res; 2005 Jul; 65(13):5638-46. PubMed ID: 15994936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dihydrouridine synthesis in tRNAs is under reductive evolution in Mollicutes.
    Faivre B; Lombard M; Fakroun S; Vo CD; Goyenvalle C; Guérineau V; Pecqueur L; Fontecave M; De Crécy-Lagard V; Brégeon D; Hamdane D
    RNA Biol; 2021 Dec; 18(12):2278-2289. PubMed ID: 33685366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The specificities of four yeast dihydrouridine synthases for cytoplasmic tRNAs.
    Xing F; Hiley SL; Hughes TR; Phizicky EM
    J Biol Chem; 2004 Apr; 279(17):17850-60. PubMed ID: 14970222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From bacterial to human dihydrouridine synthase: automated structure determination.
    Whelan F; Jenkins HT; Griffiths SC; Byrne RT; Dodson EJ; Antson AA
    Acta Crystallogr D Biol Crystallogr; 2015 Jul; 71(Pt 7):1564-71. PubMed ID: 26143927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis on evolutionary relationship of amylases from archaea, bacteria and eukaryota.
    Yan S; Wu G
    World J Microbiol Biotechnol; 2016 Feb; 32(2):24. PubMed ID: 26745984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequence- and Structure-Specific tRNA Dihydrouridylation by hDUS2.
    Ji J; Yu NJ; Kleiner RE
    ACS Cent Sci; 2024 Apr; 10(4):803-812. PubMed ID: 38680565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The UlaG protein family defines novel structural and functional motifs grafted on an ancient RNase fold.
    Fernandez FJ; Garces F; López-Estepa M; Aguilar J; Baldomà L; Coll M; Badia J; Vega MC
    BMC Evol Biol; 2011 Sep; 11():273. PubMed ID: 21943130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early evolution of the biotin-dependent carboxylase family.
    Lombard J; Moreira D
    BMC Evol Biol; 2011 Aug; 11():232. PubMed ID: 21827699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Dihydrouridine landscape from tRNA to mRNA: a perspective on synthesis, structural impact and function.
    Finet O; Yague-Sanz C; Marchand F; Hermand D
    RNA Biol; 2022 Jan; 19(1):735-750. PubMed ID: 35638108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A minimal sequence motif drives selective tRNA dihydrouridylation by hDUS2.
    Ji J; Yu NJ; Kleiner RE
    bioRxiv; 2023 Nov; ():. PubMed ID: 37961591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases.
    Tkaczuk KL; Dunin-Horkawicz S; Purta E; Bujnicki JM
    BMC Bioinformatics; 2007 Mar; 8():73. PubMed ID: 17338813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.