These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 22741804)

  • 21. Comparative molecular field analysis of a series of inhibitors of HIV-1 protease.
    Ferreira LG; Leitão A; Montanari CA; Andricopulo AD
    Med Chem; 2011 Mar; 7(2):71-9. PubMed ID: 21222610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of triazolamers as active site inhibitors of HIV-1 protease.
    Jochim AL; Miller SE; Angelo NG; Arora PS
    Bioorg Med Chem Lett; 2009 Nov; 19(21):6023-6. PubMed ID: 19800230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The inhibition effect of garlic-derived compounds on human immunodeficiency virus type 1 and saquinavir.
    Gökalp F
    J Biochem Mol Toxicol; 2018 Nov; 32(11):e22215. PubMed ID: 30194790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A priori molecular descriptors in QSAR: a case of HIV-1 protease inhibitors. II. Molecular graphics and modeling.
    Kiralj R; Ferreira MM
    J Mol Graph Model; 2003 Jun; 21(6):499-515. PubMed ID: 12676237
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploration of the structural requirements of HIV-protease inhibitors using pharmacophore, virtual screening and molecular docking approaches for lead identification.
    Islam MA; Pillay TS
    J Mol Graph Model; 2015 Mar; 56():20-30. PubMed ID: 25541527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D-QSAR CoMFA/CoMSIA models based on theoretical active conformers of HOE/BAY-793 analogs derived from HIV-1 protease inhibitor complexes.
    da Cunha EF; Sippl W; de Castro Ramalho T; Ceva Antunes OA; de Alencastro RB; Albuquerque MG
    Eur J Med Chem; 2009 Nov; 44(11):4344-52. PubMed ID: 19616874
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selection of molecular descriptors with artificial intelligence for the understanding of HIV-1 protease peptidomimetic inhibitors-activity.
    Sirois S; Tsoukas CM; Chou KC; Wei D; Boucher C; Hatzakis GE
    Med Chem; 2005 Mar; 1(2):173-84. PubMed ID: 16787312
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure-based phenotyping predicts HIV-1 protease inhibitor resistance.
    Shenderovich MD; Kagan RM; Heseltine PN; Ramnarayan K
    Protein Sci; 2003 Aug; 12(8):1706-18. PubMed ID: 12876320
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The QSAR and docking calculations of fullerene derivatives as HIV-1 protease inhibitors.
    Saleh NA
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt C():1523-9. PubMed ID: 25459714
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Using Hierarchical Virtual Screening To Combat Drug Resistance of the HIV-1 Protease.
    Li N; Ainsworth RI; Ding B; Hou T; Wang W
    J Chem Inf Model; 2015 Jul; 55(7):1400-12. PubMed ID: 25993532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Drug Re-positioning Studies for Novel HIV-1 Inhibitors Using Binary QSAR Models and Multi-target-driven In Silico Studies.
    Dogan B; Durdagi S
    Mol Inform; 2021 Feb; 40(2):e2000012. PubMed ID: 33405326
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Revealing interaction mode between HIV-1 protease and mannitol analog inhibitor.
    Yan GW; Chen Y; Li Y; Chen HF
    Chem Biol Drug Des; 2012 Jun; 79(6):916-25. PubMed ID: 22296911
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D-QSAR studies on chromone derivatives as HIV-1 protease inhibitors: application of molecular field analysis.
    Nunthanavanit P; Anthony NG; Johnston BF; Mackay SP; Ungwitayatorn J
    Arch Pharm (Weinheim); 2008 Jun; 341(6):357-64. PubMed ID: 18442018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rational Design of Colchicine Derivatives as anti-HIV Agents via QSAR and Molecular Docking.
    Worachartcheewan A; Songtawee N; Siriwong S; Prachayasittikul S; Nantasenamat C; Prachayasittikul V
    Med Chem; 2019; 15(4):328-340. PubMed ID: 30251609
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Combinatorial design of nonsymmetrical cyclic urea inhibitors of aspartic protease of HIV-1.
    Frecer V; Burello E; Miertus S
    Bioorg Med Chem; 2005 Sep; 13(18):5492-501. PubMed ID: 16054372
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Performance of radial distribution function-based descriptors in the chemoinformatic studies of HIV-1 protease.
    Novak J; Grishina MA; Potemkin VA; Gasteiger J
    Future Med Chem; 2020 Feb; 12(4):299-309. PubMed ID: 31983244
    [No Abstract]   [Full Text] [Related]  

  • 37. Could the FDA-approved anti-HIV PR inhibitors be promising anticancer agents? An answer from enhanced docking approach and molecular dynamics analyses.
    Arodola OA; Soliman ME
    Drug Des Devel Ther; 2015; 9():6055-65. PubMed ID: 26622167
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein promiscuity: drug resistance and native functions--HIV-1 case.
    Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B
    J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advances in automated docking applied to human immunodeficiency virus type 1 protease.
    Miller MD; Sheridan RP; Kearsley SK; Underwood DJ
    Methods Enzymol; 1994; 241():354-70. PubMed ID: 7854188
    [No Abstract]   [Full Text] [Related]  

  • 40. Developing a methodology for an inverse quantitative structure-activity relationship using the signature molecular descriptor.
    Visco DP; Pophale RS; Rintoul MD; Faulon JL
    J Mol Graph Model; 2002 Jun; 20(6):429-38. PubMed ID: 12071277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.