BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 22741806)

  • 1. Poly (D,L-lactic-co-glycolide) nanoparticles for the improved therapeutic efficacy of all-trans-retinoic acid: a study of acute myeloid leukemia (AML) cell differentiation in vitro.
    Simon AM; Jagadeeshan S; Abraham E; Akhilandeshwaran A; Pillai JJ; Kumar NA; Sivakumari AN; Kumar GS
    Med Chem; 2012 Sep; 8(5):805-10. PubMed ID: 22741806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of poly(DL-lactide-co-glycolide) microspheres encapsulating all-trans retinoic acid.
    Jeong YI; Song JG; Kang SS; Ryu HH; Lee YH; Choi C; Shin BA; Kim KK; Ahn KY; Jung S
    Int J Pharm; 2003 Jun; 259(1-2):79-91. PubMed ID: 12787638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-trans retinoic acid loaded block copolymer nanoparticles efficiently induce cellular differentiation in HL-60 cells.
    Tiwari MD; Mehra S; Jadhav S; Bellare JR
    Eur J Pharm Sci; 2011 Dec; 44(5):643-52. PubMed ID: 22064452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel hybrid delivery system: polymer-oil nanostructured carrier for controlled delivery of highly lipophilic drug all-trans-retinoic acid (ATRA).
    Narvekar M; Xue HY; Wong HL
    Int J Pharm; 2012 Oct; 436(1-2):721-31. PubMed ID: 22850294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of poloxamer 188 on the characteristics of poly(lactide-co-glycolide) nanoparticles.
    Chae JM; Mo SM; Oh IJ
    J Nanosci Nanotechnol; 2010 May; 10(5):3224-7. PubMed ID: 20358927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization and in-vitro bioactivity evaluation of paclitaxel-loaded polyester nanoparticles.
    López-Gasco P; Iglesias I; Benedí J; Lozano R; Blanco MD
    Anticancer Drugs; 2012 Oct; 23(9):947-58. PubMed ID: 22713593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of bicalutamide-loaded PLGA nanoparticles: preparation, characterization and in-vitro evaluation for the treatment of prostate cancer.
    Ray S; Ghosh Ray S; Mandal S
    Artif Cells Nanomed Biotechnol; 2017 Aug; 45(5):944-954. PubMed ID: 27327352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(d,l-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs.
    Dong Y; Feng SS
    Biomaterials; 2005 Oct; 26(30):6068-76. PubMed ID: 15894372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-trans-retinoic acid release from core-shell type nanoparticles of poly(epsilon-caprolactone)/poly(ethylene glycol) diblock copolymer.
    Jeong YI; Kang MK; Sun HS; Kang SS; Kim HW; Moon KS; Lee KJ; Kim SH; Jung S
    Int J Pharm; 2004 Apr; 273(1-2):95-107. PubMed ID: 15010134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formulation and evaluation of biodegradable nanoparticles for the oral delivery of fenretinide.
    Graves RA; Ledet GA; Glotser EY; Mitchner DM; Bostanian LA; Mandal TK
    Eur J Pharm Sci; 2015 Aug; 76():1-9. PubMed ID: 25933716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellular cytotoxicity and in-vivo biodistribution of docetaxel poly(lactide-co-glycolide) nanoparticles.
    Esmaeili F; Dinarvand R; Ghahremani MH; Ostad SN; Esmaily H; Atyabi F
    Anticancer Drugs; 2010 Jan; 21(1):43-52. PubMed ID: 19809300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified polyvinylalcohol for encapsulation of all-trans-retinoic acid in polymeric micelles.
    Zuccari G; Carosio R; Fini A; Montaldo PG; Orienti I
    J Control Release; 2005 Mar; 103(2):369-80. PubMed ID: 15763620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of mucoadhesive poly(lactide-co-glycolide) nanoparticles for ocular application.
    Yoncheva K; Vandervoort J; Ludwig A
    Pharm Dev Technol; 2011 Feb; 16(1):29-35. PubMed ID: 20038266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ergosterol-loaded poly(lactide-co-glycolide) nanoparticles with enhanced in vitro antitumor activity and oral bioavailability.
    Zhang HY; Firempong CK; Wang YW; Xu WQ; Wang MM; Cao X; Zhu Y; Tong SS; Yu JN; Xu XM
    Acta Pharmacol Sin; 2016 Jun; 37(6):834-44. PubMed ID: 27133301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the design of in situ forming biodegradable parenteral depot systems based on insulin loaded dialkylaminoalkyl-amine-poly(vinyl alcohol)-g-poly(lactide-co-glycolide) nanoparticles.
    Packhaeuser CB; Kissel T
    J Control Release; 2007 Nov; 123(2):131-40. PubMed ID: 17854938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of Anti-Cancer Activity of Benomyl Loaded Nanoparticles in Multidrug Resistant Cancer Cells.
    Kini S; Bahadur D; Panda D
    J Biomed Nanotechnol; 2015 May; 11(5):877-89. PubMed ID: 26349399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel in situ forming drug delivery system for controlled parenteral drug delivery.
    Kranz H; Bodmeier R
    Int J Pharm; 2007 Mar; 332(1-2):107-14. PubMed ID: 17084049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile.
    Rafiei P; Haddadi A
    Int J Nanomedicine; 2017; 12():935-947. PubMed ID: 28184163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High loading efficiency and sustained release of siRNA encapsulated in PLGA nanoparticles: quality by design optimization and characterization.
    Cun D; Jensen DK; Maltesen MJ; Bunker M; Whiteside P; Scurr D; Foged C; Nielsen HM
    Eur J Pharm Biopharm; 2011 Jan; 77(1):26-35. PubMed ID: 21093589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved In Vitro Antileukemic Activity of All-Trans Retinoic Acid Loaded in Cholesteryl Butyrate Solid Lipid Nanoparticles.
    Silva EL; Lima FA; Carneiro G; Ramos Jonas Periera ; Gomes DA; de Souza-Fagundes EM; Ferreira LA
    J Nanosci Nanotechnol; 2016 Feb; 16(2):1291-300. PubMed ID: 27433579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.