BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 22742490)

  • 1. Application of selected ion flow tube-mass spectrometry to the characterization of monofloral New Zealand honeys.
    Langford V; Gray J; Foulkes B; Bray P; McEwan MJ
    J Agric Food Chem; 2012 Jul; 60(27):6806-15. PubMed ID: 22742490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Botanical and geographical origin of Turkish honeys by selected-ion flow-tube mass spectrometry and chemometrics.
    Ozcan-Sinir G; Copur OU; Barringer SA
    J Sci Food Agric; 2020 Mar; 100(5):2198-2207. PubMed ID: 31901138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of selected ion flow tube mass spectrometry coupled with chemometrics to study the effect of location and botanical origin on volatile profile of unifloral American honeys.
    Agila A; Barringer S
    J Food Sci; 2012 Oct; 77(10):C1103-8. PubMed ID: 22950649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Honey Volatiles as a Fingerprint for Botanical Origin-A Review on their Occurrence on Monofloral Honeys.
    Machado AM; Miguel MG; Vilas-Boas M; Figueiredo AC
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31963290
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent Pteridine Derivatives as New Markers for the Characterization of Genuine Monofloral New Zealand Manuka (Leptospermum scoparium) Honey.
    Beitlich N; Lübken T; Kaiser M; Ispiryan L; Speer K
    J Agric Food Chem; 2016 Nov; 64(46):8886-8891. PubMed ID: 27806565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of adulteration versus storage on volatiles in unifloral honeys from different floral sources and locations.
    Agila A; Barringer S
    J Food Sci; 2013 Feb; 78(2):C184-91. PubMed ID: 23330585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence markers in some New Zealand honeys.
    Bong J; Loomes KM; Schlothauer RC; Stephens JM
    Food Chem; 2016 Feb; 192():1006-14. PubMed ID: 26304441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating C-4 sugar contamination of manuka honey and other New Zealand honey varieties using carbon isotopes.
    Rogers KM; Sim M; Stewart S; Phillips A; Cooper J; Douance C; Pyne R; Rogers P
    J Agric Food Chem; 2014 Mar; 62(12):2605-14. PubMed ID: 24568639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mineral analysis of mono-floral New Zealand honey.
    Vanhanen LP; Emmertz A; Savage GP
    Food Chem; 2011 Sep; 128(1):236-40. PubMed ID: 25214355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Classification of 7 monofloral honey varieties by PTR-ToF-MS direct headspace analysis and chemometrics.
    Schuhfried E; Sánchez del Pulgar J; Bobba M; Piro R; Cappellin L; Märk TD; Biasioli F
    Talanta; 2016 Jan; 147():213-9. PubMed ID: 26592598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Volatile organic compounds of Thai honeys produced from several floral sources by different honey bee species.
    Pattamayutanon P; Angeli S; Thakeow P; Abraham J; Disayathanoowat T; Chantawannakul P
    PLoS One; 2017; 12(2):e0172099. PubMed ID: 28192487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Buckwheat honeys: screening of composition and properties.
    Pasini F; Gardini S; Marcazzan GL; Caboni MF
    Food Chem; 2013 Dec; 141(3):2802-11. PubMed ID: 23871027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chemometric approach for the differentiation of 15 monofloral honeys based on physicochemical parameters.
    Rodopoulou MA; Tananaki C; Kanelis D; Liolios V; Dimou M; Thrasyvoulou A
    J Sci Food Agric; 2022 Jan; 102(1):139-146. PubMed ID: 34056719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methyl syringate: a chemical marker of asphodel (Asphodelus microcarpus Salzm. et Viv.) monofloral honey.
    Tuberoso CI; Bifulco E; Jerković I; Caboni P; Cabras P; Floris I
    J Agric Food Chem; 2009 May; 57(9):3895-900. PubMed ID: 19309074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of antioxidant capacities, α-dicarbonyls, and phenolic phytochemicals in Florida varietal honeys using HPLC-DAD-ESI-MS(n.).
    Marshall SM; Schneider KR; Cisneros KV; Gu L
    J Agric Food Chem; 2014 Aug; 62(34):8623-31. PubMed ID: 25102012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrimination of honey of different floral origins by a combination of various chemical parameters.
    Jandrić Z; Haughey SA; Frew RD; McComb K; Galvin-King P; Elliott CT; Cannavan A
    Food Chem; 2015 Dec; 189():52-9. PubMed ID: 26190600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification and characterization of manuka honeys based on phenolic compounds and methylglyoxal.
    Oelschlaegel S; Gruner M; Wang PN; Boettcher A; Koelling-Speer I; Speer K
    J Agric Food Chem; 2012 Jul; 60(29):7229-37. PubMed ID: 22676798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics.
    Karabagias IK; Badeka A; Kontakos S; Karabournioti S; Kontominas MG
    Food Chem; 2014 Mar; 146():548-57. PubMed ID: 24176380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomedical Activity and Related Volatile Compounds of Thai Honeys from 3 Different Honeybee Species.
    Pattamayutanon P; Angeli S; Thakeow P; Abraham J; Disayathanoowat T; Chantawannakul P
    J Food Sci; 2015 Oct; 80(10):M2228-40. PubMed ID: 26317173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The determination of botanical origin of honeys based on enantiomer distribution of chiral volatile organic compounds.
    Špánik I; Pažitná A; Šiška P; Szolcsányi P
    Food Chem; 2014 Sep; 158():497-503. PubMed ID: 24731375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.