BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 2274266)

  • 1. Carbon filaments provide support and directionality to growing rat fetal spinal cord explants.
    Khan T; Sayers S; Gaik G; Dauzvardis M
    Neurosci Lett; 1990 Oct; 118(2):172-6. PubMed ID: 2274266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon filament implants promote axonal growth across the transected rat spinal cord.
    Khan T; Dauzvardis M; Sayers S
    Brain Res; 1991 Feb; 541(1):139-45. PubMed ID: 2029615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Subpial glial limiting membrane of the cat spinal cord visualized by scanning electron microscopy.
    Sasaki H
    Anat Embryol (Berl); 1989; 179(6):533-40. PubMed ID: 2751115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D meshes of carbon nanotubes guide functional reconnection of segregated spinal explants.
    Usmani S; Aurand ER; Medelin M; Fabbro A; Scaini D; Laishram J; Rosselli FB; Ansuini A; Zoccolan D; Scarselli M; De Crescenzi M; Bosi S; Prato M; Ballerini L
    Sci Adv; 2016 Jul; 2(7):e1600087. PubMed ID: 27453939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Astrocyte death in organotypic cultures of fetal spinal cord from rats with unilateral micromelia].
    Bobryshev IuV; Balabanov IuV; Chebotar' NA; Konopistseva LA
    Ontogenez; 1990; 21(4):380-7. PubMed ID: 2234790
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gangliosides of the mouse spinal cord: a comparison in in vivo and in vitro tissues.
    Baker RE; Guérold B; Dreyfus H
    Int J Dev Neurosci; 1989; 7(1):93-101. PubMed ID: 2711873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The astroglial cell that guides nerve fibers from growth cone to synapse in organotypic cultures of the fetal mouse spinal cord.
    Sobkowicz HM; Waclawik AJ; August BK
    Synapse; 2006 Mar; 59(4):183-200. PubMed ID: 16385506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AN ELECTRON MICROSCOPE STUDY OF CULTURED RAT SPINAL CORD.
    BUNGE RP; BUNGE MB; PETERSON ER
    J Cell Biol; 1965 Feb; 24(2):163-91. PubMed ID: 14326105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligodendrocyte-spinal cord explant co-culture: an in vitro model for the study of myelination.
    Chen Z; Ma Z; Wang Y; Li Y; Lü H; Fu S; Hang Q; Lu PH
    Brain Res; 2010 Jan; 1309():9-18. PubMed ID: 19879858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agar-based bridges as biocompatible candidates to provide guide cues in spinal cord injury repair.
    Martín-López E; Darder M; Ruiz-Hitzky E; Nieto Sampedro M
    Biomed Mater Eng; 2013; 23(5):405-21. PubMed ID: 23988711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological improvement after co-implantation of carbon filaments and fetal tissue in the contused rat spinal cord.
    Liu LS; Khan T; Sayers ST; Dauzvardis MF; Trausch CL
    Neurosci Lett; 1995 Nov; 200(3):199-202. PubMed ID: 9064611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spinal cord explants use carbon nanotube interfaces to enhance neurite outgrowth and to fortify synaptic inputs.
    Fabbro A; Villari A; Laishram J; Scaini D; Toma FM; Turco A; Prato M; Ballerini L
    ACS Nano; 2012 Mar; 6(3):2041-55. PubMed ID: 22339712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential growth of neurites from isolated fetal mouse dorsal root ganglia in relation to specific regions of co-cultured spinal cord explants.
    Peterson ER; Crain SM
    Brain Res; 1981 Oct; 254(3):363-82. PubMed ID: 7284857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The onset of synapse formation in spinal cord cultures as studied by electron microscopy.
    Bunge MB; Bunge RP; Peterson ER
    Brain Res; 1967 Dec; 6(4):728-49. PubMed ID: 6080223
    [No Abstract]   [Full Text] [Related]  

  • 15. Relationships between glial and neuronal elements in the development of long term cultures of the spinal cord of the fetal mouse.
    Guillery RW; Sobkowicz HM; Scott GL
    J Comp Neurol; 1970 Sep; 140(1):1-33. PubMed ID: 5459210
    [No Abstract]   [Full Text] [Related]  

  • 16. Development of glial cytoarchitecture in the frog spinal cord.
    Maier CE; Miller RH
    Dev Neurosci; 1995; 17(3):149-59. PubMed ID: 8549426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Perinodal astrocytic processes at nodes of Ranvier in developing normal and glial cell deficient rat spinal cord.
    Sims TJ; Waxman SG; Black JA; Gilmore SA
    Brain Res; 1985 Jul; 337(2):321-31. PubMed ID: 4027576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of the acellular scaffold of the spinal cord and the study of biocompatibility.
    Guo SZ; Ren XJ; Wu B; Jiang T
    Spinal Cord; 2010 Jul; 48(7):576-81. PubMed ID: 20065987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oligodendroglial sheath lengths in developing rat ventral funiculus and corpus callosum.
    Bjartmar C
    Neurosci Lett; 1996 Sep; 216(2):85-8. PubMed ID: 8904789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of Met-enkephalin immunoreactivity in organotypic explants of fetal mouse spinal cord and attached dorsal root ganglia.
    Chalazonitis A; Groth J; Hiller JM; Simon EJ; Crain SM
    Brain Res; 1984 Feb; 314(2):183-9. PubMed ID: 6704747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.