These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 2274266)

  • 41. Migration of cultured fetal spinal cord astrocytes into adult host cervical cord and medulla following transplantation into thoracic spinal cord.
    Goldberg WJ; Bernstein JJ
    J Neurosci Res; 1988; 19(1):34-42. PubMed ID: 3343709
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Inhibitory effect of anti-motoneuron serum on the neurite outgrowth of spinal cord explants (in vitro) and the cross-reactivity of serum to human and rat motoneurons].
    Zhu Y; Cao C; Shi H; Wang Y; Wan X
    Zhongguo Yi Xue Ke Xue Yuan Xue Bao; 1995 Feb; 17(1):41-5. PubMed ID: 7781127
    [TBL] [Abstract][Full Text] [Related]  

  • 43. NOGO mRNA expression in adult and fetal human and rat nervous tissue and in weight drop injury.
    Josephson A; Widenfalk J; Widmer HW; Olson L; Spenger C
    Exp Neurol; 2001 Jun; 169(2):319-28. PubMed ID: 11358445
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expression of intermediate filaments and desmosomal proteins during differentiation of the human spinal cord.
    Saraga-Babić M; Stefanović V; Saraga M; Wartiovaara J; Lehtonen E
    Acta Histochem; 2002; 104(2):157-66. PubMed ID: 12086336
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rabies virus is not cytolytic for rat spinal motoneurons in vitro.
    Guigoni C; Coulon P
    J Neurovirol; 2002 Aug; 8(4):306-17. PubMed ID: 12161815
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chitosan implants in the rat spinal cord: biocompatibility and biodegradation.
    Kim H; Tator CH; Shoichet MS
    J Biomed Mater Res A; 2011 Jun; 97(4):395-404. PubMed ID: 21465644
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An electron-microscopic study of the early outgrowth from chick spinal cord in vitro.
    Grainger F; James DW; Tresman RL
    Z Zellforsch Mikrosk Anat; 1968; 90(1):53-67. PubMed ID: 4881209
    [No Abstract]   [Full Text] [Related]  

  • 48. Ependyma formation in adult rat spinal cord after transplantation of fetal cerebral cortex homografts.
    Bernstein JJ
    J Neurosci Res; 1986; 15(4):481-90. PubMed ID: 3723608
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Some observations on early myelination in the human spinal cord. Light and electron microscope study.
    Meier C
    Brain Res; 1976 Mar; 104(1):21-32. PubMed ID: 1247906
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of temperature on the early stages of rat spinal motoneurone development in vitro.
    Bohin J; Ternaux JP
    Neurosci Lett; 2002 Aug; 329(1):106-10. PubMed ID: 12161273
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Basement membrane material and glial cells in spinal cord cultures of newborn rats.
    Wolff JR; Hösli E; Hösli L
    Brain Res; 1971 Sep; 32(1):198-202. PubMed ID: 4107039
    [No Abstract]   [Full Text] [Related]  

  • 52. Electron microscope observations on the human foetal and embryonic spinal cord.
    Gamble HJ
    J Anat; 1969 May; 104(Pt 3):435-53. PubMed ID: 5804556
    [No Abstract]   [Full Text] [Related]  

  • 53. Ultrastructural localization of neurofilament proteins in aluminum-induced neurofibrillary tangles and rat cerebellum by immunoperoxidase labeling.
    Dahl D; Nguyen BT; Bignami A
    Dev Neurosci; 1982; 5(1):54-63. PubMed ID: 7049661
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Initial growth of transplanted E11 fetal cortex and spinal cord in adult rat spinal cord.
    Bernstein JJ; Hoovler DW; Turtil S
    Brain Res; 1985 Sep; 343(2):336-45. PubMed ID: 4052754
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Early myelination in the human fetal lumbosacral spinal cord: characterization by light and electron microscopy.
    Weidenheim KM; Kress Y; Epshteyn I; Rashbaum WK; Lyman WD
    J Neuropathol Exp Neurol; 1992 Mar; 51(2):142-9. PubMed ID: 1538238
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aggregation of intermediate filaments by 2,5-hexanedione: comparison of effects on neurofilaments, GFAP-filaments and vimentin-filaments in dissociated cultures of mouse spinal cord-dorsal root ganglia.
    Durham HD
    J Neuropathol Exp Neurol; 1988 Jul; 47(4):432-42. PubMed ID: 3385438
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neuropeptide receptors in developing and adult rat spinal cord: an in vitro quantitative autoradiography study of calcitonin gene-related peptide, neurokinins, mu-opioid, galanin, somatostatin, neurotensin and vasoactive intestinal polypeptide receptors.
    Kar S; Quirion R
    J Comp Neurol; 1995 Apr; 354(2):253-81. PubMed ID: 7782502
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Growth rate analysis of neurites extended from triploid spinal cord explants.
    Procento GM; Pollack ED
    Brain Res Dev Brain Res; 1989 Jun; 47(2):243-9. PubMed ID: 2787216
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regeneration of adult dorsal root axons into transplants of fetal spinal cord and brain: a comparison of growth and synapse formation in appropriate and inappropriate targets.
    Itoh Y; Tessler A
    J Comp Neurol; 1990 Dec; 302(2):272-93. PubMed ID: 2289974
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Focal release of neurotrophic factors by biodegradable microspheres enhance motor and sensory axonal regeneration in vitro and in vivo.
    Santos D; Giudetti G; Micera S; Navarro X; Del Valle J
    Brain Res; 2016 Apr; 1636():93-106. PubMed ID: 26854135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.