These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 22742703)
1. Finite element analysis of artificial disc with an elastomeric core in the lumbar spine. Borkowski P; Marek P; Krzesiński G; Ryszkowska J; Waśniewski B; Wymysłowski P; Zagrajek T Acta Bioeng Biomech; 2012; 14(1):59-66. PubMed ID: 22742703 [TBL] [Abstract][Full Text] [Related]
2. Strain behavior of malaligned cervical spine implanted with metal-on-polyethylene, metal-on-metal, and elastomeric artificial disc prostheses - A finite element analysis. Chen WM; Jin J; Park T; Ryu KS; Lee SJ Clin Biomech (Bristol); 2018 Nov; 59():19-26. PubMed ID: 30119037 [TBL] [Abstract][Full Text] [Related]
3. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis. Chung SK; Kim YE; Wang KC Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003 [TBL] [Abstract][Full Text] [Related]
4. Restoration of compressive loading properties of lumbar discs with a nucleus implant-a finite element analysis study. Strange DG; Fisher ST; Boughton PC; Kishen TJ; Diwan AD Spine J; 2010 Jul; 10(7):602-9. PubMed ID: 20547110 [TBL] [Abstract][Full Text] [Related]
5. In situ contact analysis of the prosthesis components of Prodisc-L in lumbar spine following total disc replacement. Chen WM; Park C; Lee K; Lee S Spine (Phila Pa 1976); 2009 Sep; 34(20):E716-23. PubMed ID: 19752690 [TBL] [Abstract][Full Text] [Related]
6. Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: an in vivo image-based finite element study. Lin CY; Kang H; Rouleau JP; Hollister SJ; Marca FL Spine (Phila Pa 1976); 2009 Jul; 34(15):1554-60. PubMed ID: 19564765 [TBL] [Abstract][Full Text] [Related]
7. In silico evaluation of a new composite disc substitute with a L3-L5 lumbar spine finite element model. Noailly J; Ambrosio L; Elizabeth Tanner K; Planell JA; Lacroix D Eur Spine J; 2012 Jun; 21 Suppl 5(Suppl 5):S675-87. PubMed ID: 21380572 [TBL] [Abstract][Full Text] [Related]
8. [Effects of novel angled cervical disc replacement on facet joint stress]. Bai C; Zhang W; Ling W; Tian Z; Dang X; Wang K Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2012 Apr; 26(4):390-5. PubMed ID: 22568314 [TBL] [Abstract][Full Text] [Related]
9. The influence of different magnitudes and methods of applying preload on fusion and disc replacement constructs in the lumbar spine: a finite element analysis. Zhong ZC; Hung C; Lin HM; Wang YH; Huang CH; Chen CS Comput Methods Biomech Biomed Engin; 2013; 16(9):943-53. PubMed ID: 22224913 [TBL] [Abstract][Full Text] [Related]
10. An in vitro biomechanical comparison of Cadisc™-L with natural lumbar discs in axial compression and sagittal flexion. McNally D; Naylor J; Johnson S Eur Spine J; 2012 Jun; 21 Suppl 5(Suppl 5):S612-7. PubMed ID: 22411042 [TBL] [Abstract][Full Text] [Related]
11. Prosthesis optimization and mechanical analysis of artificial lumbar disc replacement. Jiang X; Wu L; Zheng A; Jin H J Clin Neurosci; 2024 Aug; 126():319-327. PubMed ID: 39018828 [TBL] [Abstract][Full Text] [Related]
12. [Influence of inlay height on motion characteristics of lumbar segments in total disc replacement]. Weisskopf M; Ohnsorge JA; Martini F; Niethard FU; Birnbaum K Z Orthop Unfall; 2008; 146(4):452-7. PubMed ID: 18704840 [TBL] [Abstract][Full Text] [Related]
13. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study. Fagan MJ; Julian S; Siddall DJ; Mohsen AM Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788 [TBL] [Abstract][Full Text] [Related]
14. The effects of different articulate curvature of artificial disc on loading distribution. Wei HW; Chiang YF; Chen YW; Cheng CK; Tsuang YH J Appl Biomater Funct Mater; 2012 Sep; 10(2):107-12. PubMed ID: 22798234 [TBL] [Abstract][Full Text] [Related]
15. Effect of spacer diameter of the Dynesys dynamic stabilization system on the biomechanics of the lumbar spine: a finite element analysis. Shih SL; Chen CS; Lin HM; Huang LY; Liu CL; Huang CH; Cheng CK J Spinal Disord Tech; 2012 Jul; 25(5):E140-9. PubMed ID: 22744611 [TBL] [Abstract][Full Text] [Related]
16. Dynamic, six-axis stiffness matrix characteristics of the intact intervertebral disc and a disc replacement. Holsgrove TP; Gill HS; Miles AW; Gheduzzi S Proc Inst Mech Eng H; 2015 Nov; 229(11):769-77. PubMed ID: 26503838 [TBL] [Abstract][Full Text] [Related]
17. Comparison of biomechanical function at ideal and varied surgical placement for two lumbar artificial disc implant designs: mobile-core versus fixed-core. Moumene M; Geisler FH Spine (Phila Pa 1976); 2007 Aug; 32(17):1840-51. PubMed ID: 17762291 [TBL] [Abstract][Full Text] [Related]
18. Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading. Schmidt H; Kettler A; Heuer F; Simon U; Claes L; Wilke HJ Spine (Phila Pa 1976); 2007 Apr; 32(7):748-55. PubMed ID: 17414908 [TBL] [Abstract][Full Text] [Related]
19. Computational biomechanics of a lumbar motion segment in pure and combined shear loads. Schmidt H; Bashkuev M; Dreischarf M; Rohlmann A; Duda G; Wilke HJ; Shirazi-Adl A J Biomech; 2013 Sep; 46(14):2513-21. PubMed ID: 23953504 [TBL] [Abstract][Full Text] [Related]
20. Finite element based nonlinear normalization of human lumbar intervertebral disc stiffness to account for its morphology. Maquer G; Laurent M; Brandejsky V; Pretterklieber ML; Zysset PK J Biomech Eng; 2014 Jun; 136(6):061003. PubMed ID: 24671515 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]