BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 22742903)

  • 1. Ultrasound-assisted permeability improvement and acoustic characterization for solid-state fabricated PLA foams.
    Guo G; Ma Q; Zhao B; Zhang D
    Ultrason Sonochem; 2013 Jan; 20(1):137-43. PubMed ID: 22742903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications.
    Wang X; Li W; Kumar V
    Biomaterials; 2006 Mar; 27(9):1924-9. PubMed ID: 16219346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polylactic acid (PLA): research, development and industrialization.
    Pang X; Zhuang X; Tang Z; Chen X
    Biotechnol J; 2010 Nov; 5(11):1125-36. PubMed ID: 21058315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell morphology of extrusion foamed poly(lactic acid) using endothermic chemical foaming agent.
    Matuana LM; Faruk O; Diaz CA
    Bioresour Technol; 2009 Dec; 100(23):5947-54. PubMed ID: 19615893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalisation and surface modification of electrospun polylactic acid scaffold for tissue engineering.
    Hoveizi E; Nabiuni M; Parivar K; Rajabi-Zeleti S; Tavakol S
    Cell Biol Int; 2014 Jan; 38(1):41-9. PubMed ID: 24030862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of processing variables on morphological and mechanical properties of supercritical CO2 foamed scaffolds for tissue engineering.
    White LJ; Hutter V; Tai H; Howdle SM; Shakesheff KM
    Acta Biomater; 2012 Jan; 8(1):61-71. PubMed ID: 21855663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A facile method for preparing biodegradable chitosan derivatives with low grafting degree of poly(lactic acid).
    Li J; Kong M; Cheng XJ; Li JJ; Liu WF; Chen XG
    Int J Biol Macromol; 2011 Dec; 49(5):1016-21. PubMed ID: 21893088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laboratory composting of extruded starch acetate and poly lactic acid blended foams.
    Ganjyal GM; Weber R; Hanna MA
    Bioresour Technol; 2007 Nov; 98(16):3176-9. PubMed ID: 17222552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human fetal bone cells associated with ceramic reinforced PLA scaffolds for tissue engineering.
    Montjovent MO; Mark S; Mathieu L; Scaletta C; Scherberich A; Delabarde C; Zambelli PY; Bourban PE; Applegate LA; Pioletti DP
    Bone; 2008 Mar; 42(3):554-64. PubMed ID: 18178142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microparticulate release systems based on natural origin materials.
    Silva GA; Costa FJ; Neves NM; Reis RL
    Adv Exp Med Biol; 2004; 553():283-300. PubMed ID: 15503464
    [No Abstract]   [Full Text] [Related]  

  • 11. [Elaboration of biodegradable polymer substrate for cultivation of human dermal fibroblasts].
    Shved IuA; Kukhareva LV; Zorin IM; Solov'ev AIu; Blinova MI; Bilibin AIu; Pinaev GP
    Tsitologiia; 2006; 48(2):161-8. PubMed ID: 16737184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid state microcellular foamed poly(lactic acid): morphology and property characterization.
    Matuana LM
    Bioresour Technol; 2008 Jun; 99(9):3643-50. PubMed ID: 17855079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing.
    Giordano RA; Wu BM; Borland SW; Cima LG; Sachs EM; Cima MJ
    J Biomater Sci Polym Ed; 1996; 8(1):63-75. PubMed ID: 8933291
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A "room-temperature" injection molding/particulate leaching approach for fabrication of biodegradable three-dimensional porous scaffolds.
    Wu L; Jing D; Ding J
    Biomaterials; 2006 Jan; 27(2):185-91. PubMed ID: 16098580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repair of critical size defects in the rat cranium using ceramic-reinforced PLA scaffolds obtained by supercritical gas foaming.
    Montjovent MO; Mathieu L; Schmoekel H; Mark S; Bourban PE; Zambelli PY; Laurent-Applegate LA; Pioletti DP
    J Biomed Mater Res A; 2007 Oct; 83(1):41-51. PubMed ID: 17377968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and properties of poly (lactic acid)/Sterculia urens uniaxial fabric biocomposites.
    Jayaramudu J; Reddy GS; Varaprasad K; Sadiku ER; Ray SS; Rajulu AV
    Carbohydr Polym; 2013 May; 94(2):822-8. PubMed ID: 23544638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The construction and physical-mechanical characterization of polymer foams of D. L-PLA].
    Wang C; Wang Q; Mao T; Wang H; Zhu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Dec; 17(4):396-9. PubMed ID: 11211823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of permeable degradable poly(DL-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels.
    Wen X; Tresco PA
    Biomaterials; 2006 Jul; 27(20):3800-9. PubMed ID: 16564567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrolysis and biomineralization of porous PLA microspheres and their influence on cell growth.
    Shi X; Jiang J; Sun L; Gan Z
    Colloids Surf B Biointerfaces; 2011 Jun; 85(1):73-80. PubMed ID: 21131184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses.
    Kim HW; Yu HS; Lee HH
    J Biomed Mater Res A; 2008 Oct; 87(1):25-32. PubMed ID: 18080298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.