BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22743111)

  • 1. Role of crystal arrangement on the mechanical performance of enamel.
    An B; Wang R; Zhang D
    Acta Biomater; 2012 Oct; 8(10):3784-93. PubMed ID: 22743111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Damage mechanisms in uniaxial compression of single enamel rods.
    An B; Wang R; Arola D; Zhang D
    J Mech Behav Biomed Mater; 2015 Feb; 42():1-9. PubMed ID: 25460920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of property gradients on the mechanical behavior of human enamel.
    An B; Wang R; Arola D; Zhang D
    J Mech Behav Biomed Mater; 2012 May; 9():63-72. PubMed ID: 22498284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Orientation and deformation of mineral crystals in tooth surfaces.
    Fujisaki K; Todoh M; Niida A; Shibuya R; Kitami S; Tadano S
    J Mech Behav Biomed Mater; 2012 Jun; 10():176-82. PubMed ID: 22520429
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical modelling of elastic behaviour of human enamel based on synchrotron diffraction characterisation.
    Sui T; Sandholzer MA; Baimpas N; Dolbnya IP; Landini G; Korsunsky AM
    J Struct Biol; 2013 Nov; 184(2):136-46. PubMed ID: 24113527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy absorption characterization of human enamel using nanoindentation.
    He LH; Swain MV
    J Biomed Mater Res A; 2007 May; 81(2):484-92. PubMed ID: 17133444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective property of tooth enamel: monoclinic behavior.
    Lu C; Nakamura T; Korach CS
    J Biomech; 2012 May; 45(8):1437-43. PubMed ID: 22405497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enamel - a "metallic-like" deformable biocomposite.
    He LH; Swain MV
    J Dent; 2007 May; 35(5):431-7. PubMed ID: 17270335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anisotropic demineralization and oriented assembly of hydroxyapatite crystals in enamel: smart structures of biominerals.
    Pan H; Tao J; Yu X; Fu L; Zhang J; Zeng X; Xu G; Tang R
    J Phys Chem B; 2008 Jun; 112(24):7162-5. PubMed ID: 18503266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical modelling of in situ elastic deformation of human enamel based on photoelastic and diffraction analysis of stresses and strains.
    Sui T; Lunt AJ; Baimpas N; Sandholzer MA; Hu J; Dolbnya IP; Landini G; Korsunsky AM
    Acta Biomater; 2014 Jan; 10(1):343-54. PubMed ID: 24121194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fracture mechanics of hydroxyapatite single crystals under geometric confinement.
    Libonati F; Nair AK; Vergani L; Buehler MJ
    J Mech Behav Biomed Mater; 2013 Apr; 20():184-91. PubMed ID: 23500480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the elastic/plastic transition of human enamel by nanoindentation.
    Ang SF; Scholz T; Klocke A; Schneider GA
    Dent Mater; 2009 Nov; 25(11):1403-10. PubMed ID: 19647864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical behavior of enamel rods under micro-compression.
    Yilmaz ED; Schneider GA
    J Mech Behav Biomed Mater; 2016 Oct; 63():183-194. PubMed ID: 27415405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micromechanical characterization of prismless enamel in the tuatara, Sphenodon punctatus.
    Yilmaz ED; Bechtle S; Ă–zcoban H; Kieser JA; Swain MV; Schneider GA
    J Mech Behav Biomed Mater; 2014 Nov; 39():210-7. PubMed ID: 25146675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of structural hierarchy on the fracture behaviour of tooth enamel.
    Yilmaz ED; Schneider GA; Swain MV
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological organization of hydroxyapatite crystallites into a fibrous continuum toughens and controls anisotropy in human enamel.
    White SN; Luo W; Paine ML; Fong H; Sarikaya M; Snead ML
    J Dent Res; 2001 Jan; 80(1):321-6. PubMed ID: 11269723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the critical parameters that regulate the deformation behaviour of tooth enamel.
    Xie Z; Swain M; Munroe P; Hoffman M
    Biomaterials; 2008 Jun; 29(17):2697-703. PubMed ID: 18359075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variability in the nanoscale deformation of hydroxyapatite during compressive loading in bovine bone.
    Singhal A; Almer JD; Dunand DC
    Acta Biomater; 2012 Jul; 8(7):2747-58. PubMed ID: 22465576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales.
    Ang SF; Bortel EL; Swain MV; Klocke A; Schneider GA
    Biomaterials; 2010 Mar; 31(7):1955-63. PubMed ID: 19969342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deformation behavior of human enamel and dentin-enamel junction under compression.
    Zaytsev D; Panfilov P
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():15-21. PubMed ID: 24268228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.