These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22743415)

  • 1. Electron acceleration driven by ultrashort and nonparaxial radially polarized laser pulses.
    Marceau V; April A; Piché M
    Opt Lett; 2012 Jul; 37(13):2442-4. PubMed ID: 22743415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-color-laser-driven direct electron acceleration in infinite vacuum.
    Wong LJ; Kärtner FX
    Opt Lett; 2011 Mar; 36(6):957-9. PubMed ID: 21403741
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validity of the paraxial approximation for electron acceleration with radially polarized laser beams.
    Marceau V; Varin C; Piché M
    Opt Lett; 2013 Mar; 38(6):821-3. PubMed ID: 23503227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short pulse laser beam beyond paraxial approximation.
    Favier P; Dupraz K; Cassou K; Liu X; Martens A; Ndiaye CF; Williams T; Zomer F
    J Opt Soc Am A Opt Image Sci Vis; 2017 Aug; 34(8):1351-1359. PubMed ID: 29036100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct acceleration of an electron in infinite vacuum by a pulsed radially-polarized laser beam.
    Wong LJ; Kärtner FX
    Opt Express; 2010 Nov; 18(24):25035-51. PubMed ID: 21164849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron acceleration driven by sub-cycle and single-cycle focused optical pulse with radially polarized electromagnetic field.
    Cai X; Zhao J; Lin Q; Tong H; Liu J
    Opt Express; 2018 Nov; 26(23):30030-30041. PubMed ID: 30469883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vacuum electron acceleration driven by a tightly focused radially polarized Gaussian beam.
    Dai L; Li JX; Zang WP; Tian JG
    Opt Express; 2011 May; 19(10):9303-8. PubMed ID: 21643185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acceleration of electrons by tightly focused azimuthally polarized ultrashort pulses in a vacuum.
    Zheng Y; Cai X; Zhao X; Wang W
    Opt Express; 2022 Jan; 30(2):1627-1640. PubMed ID: 35209319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of longitudinal chromatism on vacuum acceleration by intense radially polarized laser beams.
    Jolly SW
    Opt Lett; 2019 Apr; 44(7):1833-1836. PubMed ID: 30933159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Femtosecond 240-keV electron pulses from direct laser acceleration in a low-density gas.
    Marceau V; Varin C; Brabec T; Piché M
    Phys Rev Lett; 2013 Nov; 111(22):224801. PubMed ID: 24329450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radially and azimuthally polarized nonparaxial Bessel beams made simple.
    Ornigotti M; Aiello A
    Opt Express; 2013 Jul; 21(13):15530-7. PubMed ID: 23842340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relativistic Acceleration of Electrons Injected by a Plasma Mirror into a Radially Polarized Laser Beam.
    Zaïm N; Thévenet M; Lifschitz A; Faure J
    Phys Rev Lett; 2017 Sep; 119(9):094801. PubMed ID: 28949590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the importance of frequency-dependent beam parameters for vacuum acceleration with few-cycle radially polarized laser beams.
    Jolly SW
    Opt Lett; 2020 Jul; 45(14):3865-3868. PubMed ID: 32667305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Azimuthally polarized spatial dark solitons: exact solutions of Maxwell's equations in a Kerr medium.
    Ciattoni A; Crosignani B; Di Porto P; Yariv A
    Phys Rev Lett; 2005 Feb; 94(7):073902. PubMed ID: 15783817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonparaxial TM and TE beams in free space.
    April A
    Opt Lett; 2008 Jul; 33(14):1563-5. PubMed ID: 18628798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient acceleration of electrons with counterpropagating intense laser pulses in vacuum and underdense plasma.
    Sheng ZM; Mima K; Zhang J; Meyer-Ter-Vehn J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 2):016407. PubMed ID: 14995725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffraction of femtosecond pulses; nonparaxial regime.
    Kovachev LM; Kovachev KL
    J Opt Soc Am A Opt Image Sci Vis; 2008 Sep; 25(9):2232-43. PubMed ID: 18758549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron self-injection during interaction of tightly focused few-cycle laser pulses with underdense plasma.
    Zhidkov A; Fujii T; Nemoto K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036406. PubMed ID: 18851168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved beam waist formula for ultrashort, tightly focused linearly, radially, and azimuthally polarized laser pulses in free space.
    Wong LJ; Kärtner FX; Johnson SG
    Opt Lett; 2014 Mar; 39(5):1258-61. PubMed ID: 24690721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrashort focused electromagnetic pulses.
    An der Brügge D; Pukhov A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016603. PubMed ID: 19257156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.