BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 22743544)

  • 1. Challenges in the simulation of dye-sensitized ZnO solar cells: quantum confinement, alignment of energy levels and excited state nature at the dye/semiconductor interface.
    Amat A; De Angelis F
    Phys Chem Chem Phys; 2012 Aug; 14(30):10662-8. PubMed ID: 22743544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic and optical properties of dye-sensitized TiO₂ interfaces.
    Pastore M; Selloni A; Fantacci S; De Angelis F
    Top Curr Chem; 2014; 347():1-45. PubMed ID: 24488437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First principles modeling of eosin-loaded ZnO films: a step toward the understanding of dye-sensitized solar cell performances.
    Labat F; Ciofini I; Hratchian HP; Frisch M; Raghavachari K; Adamo C
    J Am Chem Soc; 2009 Oct; 131(40):14290-8. PubMed ID: 19761184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alignment of the dye's molecular levels with the TiO(2) band edges in dye-sensitized solar cells: a DFT-TDDFT study.
    De Angelis F; Fantacci S; Selloni A
    Nanotechnology; 2008 Oct; 19(42):424002. PubMed ID: 21832662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoselective excited state dynamics in ZnO-Au nanocomposites and their implications in photocatalysis and dye-sensitized solar cells.
    Sarkar S; Makhal A; Bora T; Baruah S; Dutta J; Pal SK
    Phys Chem Chem Phys; 2011 Jul; 13(27):12488-96. PubMed ID: 21660322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomistic mechanism of charge separation upon photoexcitation at the dye-semiconductor interface for photovoltaic applications.
    Jiao Y; Ding Z; Meng S
    Phys Chem Chem Phys; 2011 Aug; 13(29):13196-201. PubMed ID: 21709923
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A TD-DFT investigation of ground and excited state properties in indoline dyes used for dye-sensitized solar cells.
    Le Bahers T; Pauporté T; Scalmani G; Adamo C; Ciofini I
    Phys Chem Chem Phys; 2009 Dec; 11(47):11276-84. PubMed ID: 20024396
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Everything you always wanted to know about black dye (but were afraid to ask): a DFT/TDDFT investigation.
    Fantacci S; Lobello MG; De Angelis F
    Chimia (Aarau); 2013; 67(3):121-8. PubMed ID: 23574950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical properties of ZnO nanostructures: a hybrid DFT/TDDFT investigation.
    De Angelis F; Armelao L
    Phys Chem Chem Phys; 2011 Jan; 13(2):467-75. PubMed ID: 21038046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum chemistry calculations of 3-Phenoxyphthalonitrile dye sensitizer for solar cells.
    Kumar PS; Vasudevan K; Prakasam A; Geetha M; Anbarasan PM
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Sep; 77(1):45-50. PubMed ID: 20537937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size Effects in the Interface Level Alignment of Dye-Sensitized TiO2 Clusters.
    Marom N; Körzdörfer T; Ren X; Tkatchenko A; Chelikowsky JR
    J Phys Chem Lett; 2014 Jul; 5(14):2395-401. PubMed ID: 26277805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrafast dynamics of the indoline dye D149 on electrodeposited ZnO and sintered ZrO2 and TiO2 thin films.
    Oum K; Lohse PW; Flender O; Klein JR; Scholz M; Lenzer T; Du J; Oekermann T
    Phys Chem Chem Phys; 2012 Nov; 14(44):15429-37. PubMed ID: 23070060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DFT/TDDFT study of the adsorption of N3 and N719 dyes on ZnO(101̅0) surfaces.
    Azpiroz JM; De Angelis F
    J Phys Chem A; 2014 Aug; 118(31):5885-93. PubMed ID: 24720354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling charge recombination in dye-sensitized solar cells using first-principles electron dynamics: effects of structural modification.
    Ma W; Jiao Y; Meng S
    Phys Chem Chem Phys; 2013 Oct; 15(40):17187-94. PubMed ID: 24013694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculated structural and electronic interactions of the ruthenium dye N3 with a titanium dioxide nanocrystal.
    Persson P; Lundqvist MJ
    J Phys Chem B; 2005 Jun; 109(24):11918-24. PubMed ID: 16852468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical investigation of the excited states of coumarin dyes for dye-sensitized solar cells.
    Kurashige Y; Nakajima T; Kurashige S; Hirao K; Nishikitani Y
    J Phys Chem A; 2007 Jun; 111(25):5544-8. PubMed ID: 17539619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple-state interfacial electron injection competes with excited state relaxation and de-excitation to determine external quantum efficiencies of organic dye-sensitized solar cells.
    Zhang M; Yang L; Yan C; Ma W; Wang P
    Phys Chem Chem Phys; 2014 Oct; 16(38):20578-85. PubMed ID: 25156537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acene-modified triphenylamine dyes for dye-sensitized solar cells: a computational study.
    Fan W; Tan D; Deng WQ
    Chemphyschem; 2012 Jun; 13(8):2051-60. PubMed ID: 22447680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-Principles Modeling of a Dye-Sensitized TiO2/IrO2 Photoanode for Water Oxidation.
    Pastore M; De Angelis F
    J Am Chem Soc; 2015 May; 137(17):5798-809. PubMed ID: 25866864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.