These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 22743738)
1. Immobilization of mercury in field soil and sediment using carboxymethyl cellulose stabilized iron sulfide nanoparticles. Gong Y; Liu Y; Xiong Z; Kaback D; Zhao D Nanotechnology; 2012 Jul; 23(29):294007. PubMed ID: 22743738 [TBL] [Abstract][Full Text] [Related]
2. Impact of carboxymethyl cellulose coating on iron sulphide nanoparticles stability, transport, and mobilization potential of trace metals present in soils and sediment. Van Koetsem F; Van Havere L; Du Laing G J Environ Manage; 2016 Mar; 168():210-8. PubMed ID: 26708651 [TBL] [Abstract][Full Text] [Related]
3. Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Xiong Z; He F; Zhao D; Barnett MO Water Res; 2009 Dec; 43(20):5171-9. PubMed ID: 19748651 [TBL] [Abstract][Full Text] [Related]
4. Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles. An B; Zhao D J Hazard Mater; 2012 Apr; 211-212():332-41. PubMed ID: 22119304 [TBL] [Abstract][Full Text] [Related]
5. Immobilization of selenite in soil and groundwater using stabilized Fe-Mn binary oxide nanoparticles. Xie W; Liang Q; Qian T; Zhao D Water Res; 2015 Mar; 70():485-94. PubMed ID: 25577492 [TBL] [Abstract][Full Text] [Related]
6. Immobilization of arsenate in a sandy loam soil using starch-stabilized magnetite nanoparticles. Liang Q; Zhao D J Hazard Mater; 2014 Apr; 271():16-23. PubMed ID: 24584068 [TBL] [Abstract][Full Text] [Related]
7. Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles. Li Y; Wang W; Zhou L; Liu Y; Mirza ZA; Lin X Chemosphere; 2017 Feb; 169():131-138. PubMed ID: 27870934 [TBL] [Abstract][Full Text] [Related]
8. In-situ degradation of soil-sorbed 17β-estradiol using carboxymethyl cellulose stabilized manganese oxide nanoparticles: Column studies. Han B; Zhang M; Zhao D Environ Pollut; 2017 Apr; 223():238-246. PubMed ID: 28108162 [TBL] [Abstract][Full Text] [Related]
9. Green remediation of mercury-contaminated soil using iron sulfide nanoparticles: Immobilization performance and mechanisms, effects on soil properties, and life cycle assessment. Lin D; Hu G; Li H; Wu F; Li L; Yang G; Zhuang L; Gong Y Sci Total Environ; 2024 Sep; 944():173928. PubMed ID: 38871308 [TBL] [Abstract][Full Text] [Related]
10. Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Liu R; Zhao D Water Res; 2007 Jun; 41(12):2491-502. PubMed ID: 17482234 [TBL] [Abstract][Full Text] [Related]
11. In situ remediation of mercury-contaminated groundwater through an in situ created reactive zone enabled by carboxymethyl cellulose stabilized FeS nanoparticles. Wang M; Han B; Zhao D; Hou S; Yin W; Gong Y Environ Pollut; 2024 Nov; 361():124902. PubMed ID: 39243935 [TBL] [Abstract][Full Text] [Related]
12. Immobilization of mercury by carboxymethyl cellulose stabilized iron sulfide nanoparticles: reaction mechanisms and effects of stabilizer and water chemistry. Gong Y; Liu Y; Xiong Z; Zhao D Environ Sci Technol; 2014 Apr; 48(7):3986-94. PubMed ID: 24568693 [TBL] [Abstract][Full Text] [Related]
13. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI. Wang Y; Fang Z; Kang Y; Tsang EP J Hazard Mater; 2014 Jun; 275():230-7. PubMed ID: 24880637 [TBL] [Abstract][Full Text] [Related]
14. In-situ remediation of hexavalent chromium contaminated groundwater and saturated soil using stabilized iron sulfide nanoparticles. Wang T; Liu Y; Wang J; Wang X; Liu B; Wang Y J Environ Manage; 2019 Feb; 231():679-686. PubMed ID: 30391712 [TBL] [Abstract][Full Text] [Related]
15. Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite. Lyu H; Zhao H; Tang J; Gong Y; Huang Y; Wu Q; Gao B Chemosphere; 2018 Mar; 194():360-369. PubMed ID: 29223115 [TBL] [Abstract][Full Text] [Related]
16. Immobilization of Cr(VI) in Soil Using a Montmorillonite-Supported Carboxymethyl Cellulose-Stabilized Iron Sulfide Composite: Effectiveness and Biotoxicity Assessment. Zhang D; Xu Y; Li X; Liu Z; Wang L; Lu C; He X; Ma Y; Zou D Int J Environ Res Public Health; 2020 Aug; 17(17):. PubMed ID: 32825647 [TBL] [Abstract][Full Text] [Related]
17. Dynamic and equilibrium studies of the RDX removal from soil using CMC-coated zerovalent iron nanoparticles. Naja G; Apiratikul R; Pavasant P; Volesky B; Hawari J Environ Pollut; 2009; 157(8-9):2405-12. PubMed ID: 19345459 [TBL] [Abstract][Full Text] [Related]
18. Application of ferric sludge to immobilize leachable mercury in soils and concrete. Zhuang JM; Walsh T; Lam T; Boulter D Environ Technol; 2003 Nov; 24(11):1445-53. PubMed ID: 14733397 [TBL] [Abstract][Full Text] [Related]
19. In situ immobilization of Cu(II) in soils using a new class of iron phosphate nanoparticles. Liu R; Zhao D Chemosphere; 2007 Aug; 68(10):1867-76. PubMed ID: 17462708 [TBL] [Abstract][Full Text] [Related]
20. In situ immobilization of cadmium in soil by stabilized biochar-supported iron phosphate nanoparticles. Xu Y; Fang Z; Tsang EP Environ Sci Pollut Res Int; 2016 Oct; 23(19):19164-72. PubMed ID: 27351875 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]