These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
62 related articles for article (PubMed ID: 22744492)
1. The in-vivo effect of torque on growth in caudal vertebrae. Rizza R; Liu XC; Thometz J Stud Health Technol Inform; 2012; 176():209-12. PubMed ID: 22744492 [TBL] [Abstract][Full Text] [Related]
2. Mechanics and validation of an in vivo device to apply torsional loading to caudal vertebrae. Rizza R; Liu X J Biomech Eng; 2013 Aug; 135(8):81003. PubMed ID: 23722167 [TBL] [Abstract][Full Text] [Related]
3. Static versus dynamic loading in the mechanical modulation of vertebral growth. Akyuz E; Braun JT; Brown NA; Bachus KN Spine (Phila Pa 1976); 2006 Dec; 31(25):E952-8. PubMed ID: 17139211 [TBL] [Abstract][Full Text] [Related]
4. Mechanical modulation of growth for the correction of vertebral wedge deformities. Mente PL; Aronsson DD; Stokes IA; Iatridis JC J Orthop Res; 1999 Jul; 17(4):518-24. PubMed ID: 10459757 [TBL] [Abstract][Full Text] [Related]
8. The role of remodeling and asymmetric growth in vertebral wedging. Aronsson DD; Stokes IA; McBride C Stud Health Technol Inform; 2010; 158():11-5. PubMed ID: 20543392 [TBL] [Abstract][Full Text] [Related]
9. Progression of vertebral wedging in an asymmetrically loaded rat tail model. Mente PL; Stokes IA; Spence H; Aronsson DD Spine (Phila Pa 1976); 1997 Jun; 22(12):1292-6. PubMed ID: 9201830 [TBL] [Abstract][Full Text] [Related]
10. In vivo dynamic bone growth modulation is less detrimental but as effective as static growth modulation. Valteau B; Grimard G; Londono I; Moldovan F; Villemure I Bone; 2011 Nov; 49(5):996-1004. PubMed ID: 21784187 [TBL] [Abstract][Full Text] [Related]
11. Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: a controlled clinical and biomechanical study. Huang P; Gupta MC; Sarigul-Klijn N; Hazelwood S Spine J; 2006; 6(6):648-58. PubMed ID: 17088195 [TBL] [Abstract][Full Text] [Related]
12. Modulation of vertebral and tibial growth by compression loading: diurnal versus full-time loading. Stokes IA; Gwadera J; Dimock A; Farnum CE; Aronsson DD J Orthop Res; 2005 Jan; 23(1):188-95. PubMed ID: 15607892 [TBL] [Abstract][Full Text] [Related]
15. Mechanical modulation of vertebral body growth. Implications for scoliosis progression. Stokes IA; Spence H; Aronsson DD; Kilmer N Spine (Phila Pa 1976); 1996 May; 21(10):1162-7. PubMed ID: 8727190 [TBL] [Abstract][Full Text] [Related]
16. Bony-tailed tadpoles: the development of supernumerary caudal vertebrae in larval megophryids (Anura). Handrigan GR; Haas A; Wassersug RJ Evol Dev; 2007; 9(2):190-202. PubMed ID: 17371401 [TBL] [Abstract][Full Text] [Related]
17. Vertebral fractures and separations of endplates after traumatic loading of adolescent porcine spines with experimentally-induced disc degeneration. Baranto A; Ekström L; Holm S; Hellström M; Hansson HA; Swärd L Clin Biomech (Bristol); 2005 Dec; 20(10):1046-54. PubMed ID: 16102879 [TBL] [Abstract][Full Text] [Related]
18. The influence of static axial torque in combined loading on intervertebral joint failure mechanics using a porcine model. Drake JD; Aultman CD; McGill SM; Callaghan JP Clin Biomech (Bristol); 2005 Dec; 20(10):1038-45. PubMed ID: 16098646 [TBL] [Abstract][Full Text] [Related]
19. Image registration demonstrates the growth plate has a variable affect on vertebral strain. Hardisty MR; Akens M; Yee AJ; Whyne CM Ann Biomed Eng; 2010 Sep; 38(9):2948-55. PubMed ID: 20443059 [TBL] [Abstract][Full Text] [Related]
20. Trabecular microfracture precedes cortical shell failure in the rat caudal vertebra under cyclic overloading. Kummari SR; Davis AJ; Vega LA; Ahn N; Cassinelli EH; Hernandez CJ Calcif Tissue Int; 2009 Aug; 85(2):127-33. PubMed ID: 19488669 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]